Title and Abstract
			
			
				Bias-corrected estimation of linear dynamic panel data models
			
			
				In the presence of unobserved group-specific heterogeneity, the conventional fixed-effects and random-effects estimators for linear panel data models are biased when the model contains a lagged dependent variable and the number of time periods is small. We present a computationally simple bias-corrected estimator with attractive finite-sample properties, which is implemented in our new xtdpdbc Stata package. The estimator relies neither on instrumental variables nor on specific assumptions about the initial observations. Because it is a method-of-moments estimator, standard errors are readily available from asymptotic theory. Higher-order lags of the dependent variable can be accommodated as well. A useful test for the correct model specification is the Arellano-Bond test for residual 3 autocorrelation. The random-effects versus fixed-effects assumption can be tested using a Hansen overidentification test or a generalized Hausman test. The user can also specify a hybrid model, in which only a subset of the exogenous regressors satisfies a random-effects assumption.
			
			
				Suggested Citation
			
			
				Kripfganz, S., and J. Breitung (2022). Bias-corrected estimation of linear dynamic panel data models.
				Proceedings of the 2022 London Stata Conference.
			
			
				Related Work