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Abstract

This article introduces the spxtivdfreg package in Stata, which implements a general
instrumental variables (IV) approach for estimating dynamic spatial panel data models
with unobserved common factors or interactive effects, when the number of both cross-
sectional and time series observations is large. The estimator has been developed in a
recent paper by Cui, Sarafidis, and Yamagata (2023). The underlying idea is to project
out the common factors from exogenous covariates using principal components analysis,
and to run IV regression in both of two stages, using defactored covariates (and their spa-
tial counterparts) as instruments. The resulting two-stage IV estimator is valid for models
with homogeneous slope coefficients, and has several advantages relative to existing pop-
ular approaches. In addition, the spxtivdfreg package allows estimation of short-run and
long-run direct and indirect effects, as well as total effects, accounting for the cumulative
effects over time and across space. Standard errors for such effects are computed using the
Delta method. Last, the spxtivdfreg package allows for heterogeneous slope coefficients,
as in Chen, Cui, Sarafidis, and Yamagata (2023). In particular, we construct a “mean
group” IV estimator, which involves averaging first-step IV estimates of individual-specific
slope coefficients.

Keywords: panel data, longitudinal models, time lags, spatial lags, unobserved common fac-
tors, cross-sectional dependence, instrumental variables, heterogeneous coefficients, Stata.

1. Introduction
Panel data (also known as longitudinal data) relate to both space and time, and arise by
following the same (N) subjects over multiple (T ) time periods. The analysis of such data
is important for modeling human behavior across many fields of research. In particular, the
temporal dimension allows one to identify how current behavior is influenced by past own
behavior. In economics, such dependence over time is due to habit formation, costs of adjust-
ment, and uncertainty, among other factors (Bun and Sarafidis 2015). On the other hand, the
spatial dimension allows one to identify the extent to which an economic agent’s own behavior
is also influenced by the behavior of other agents, typically their peers. Such phenomenon is
due to social interactions, network linkages and spillover effects; e.g., see the pioneering work
of Case (1991) and Manski (1993). Finally, the combination of space and time allows one
to control for richer sources of unobserved heterogeneity compared to cross-sectional or time
series data alone. For instance, since agents inhabit a common economic environment, their
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behavior is often influenced by common economy-wide “shocks” that hit all individual enti-
ties, albeit with different intensities. Examples of such common shocks include technological
disruptions, natural disasters, financial crises, geopolitical conflicts, global pandemics, and
so on. Even if these attributes can be proxied by certain observed variables, their influence
on each individual is typically unknown and idiosyncratic, leading to unobserved nonlinear
heterogeneity. In econometrics, a prominent methodology for dealing with such heterogene-
ity structure is the so-called common-factor approach (Sarafidis and Wansbeek 2021). This
assumes the presence of a linear combination of a finite number of latent (time-specific) vari-
ables, called factors, interacted with individual-specific variables that are also unobserved,
known as factor loadings.
Most “large-T” panel data methods available for estimating models with the afore-described
features are based on quasi-maximum likelihood estimation (QMLE); e.g., see Yu, de Jong,
and Lee (2008), Shi and Lee (2017) and Bai and Li (2021).1 Recently, Cui et al. (2023) devel-
oped an instrumental-variables (IV) approach, which is appealing both from a computational
as well as from a theoretical point of view. To begin with, their approach is linear in the
parameters of interest and therefore computationally inexpensive. In addition, unlike QMLE
methodologies, their IV estimator can deal with endogenous covariates, where endogeneity
arises due to, say, reverse causality or measurement error.
Finally, the IV estimator of Cui et al. (2023) is asymptotically unbiased. Therefore, their
method does not require any bias correction for asymptotically valid inferences (see Cui,
Norkute, Sarafidis, and Yamagata (2022) for more details). In contrast, existing QMLE
methodologies are subject to the so-called “incidental-parameters problem”. This arises be-
cause an increasing number of nuisance parameters (the factors and factor loadings) needs to
be estimated as either N or T increases. Unfortunately, approximate bias correction proce-
dures, aiming to re-center the asymptotic distribution of the estimator, may fail to remove all
bias terms, particularly those of higher order. Moreover, in practice the number of factors is
typically unknown. When the number of factors is overestimated, bias correction can perform
poorly. Both of these issues can result in significant size distortions.
The present paper introduces the spxtivdfreg package in Stata, which implements the IV
approach of Cui et al. (2023), and extends it in two major ways. Firstly, the algorithm
allows estimation of direct and indirect effects, as well as total effects. Direct effects are those
attributed solely to changes in one’s own behavior. Indirect effects are those attributed to
changes in the behavior of one’s peers. Total effects are the sum of the two; e.g., see LeSage
and Pace (2009) and Elhorst (2014b). Standard errors for all effects are computed in the
spxtivdfreg package using the Delta method.2

Secondly, the algorithm allows for heterogeneous slope coefficients, as in a recent working
paper by Chen et al. (2023). In particular, we construct a “mean group” IV estimator, which
involves averaging first-step IV estimates of individual-specific slope coefficients.
The class of estimators implemented by the spxtivdfreg package is valid under a “large N ,
large T” framework. In practice, this implies that N and T need to be of comparable mag-
nitude; neither dimension can be considered negligible in comparison to the other. There are
several potential applications where the “large N , large T” framework is relevant. Exam-

1A notable exception is Chen, Shin, and Zheng (2022), who put forward an IV estimator for static panels
(i.e., without any dynamics), based on the “common correlated effects” approach of Pesaran (2006).

2Although standard errors for direct/indirect effects can be computed using the method of bootstrap, this is
computationally highly intensive, especially for large datasets, making it less practical in the present situation.
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ples include (i) the analysis of macroeconomic variables (e.g., gross domestic product (GDP),
inflation, unemployment) across a large number of countries over an extended time period,
(ii) longitudinal health studies investigating health outcomes for individuals examined over a
prolonged timeframe, (iii) the analysis of financial markets, studying the behavior of finan-
cial instruments across a large number of firms observed over a long time horizon, and (iv)
studies in political science, where political behavior, voter preferences, or policy outcomes are
evaluated across a large number of jurisdictions over many election cycles, to mention a few.
Since version 15, Stata is shipped with several packages for the estimation of spatial au-
toregressive models: spregress for generalized spatial two-stage least squares and maximum
likelihood estimation, spivregress for IV estimation with endogenous regressors, and spx-
tregress for fixed-effects and random-effects panel data estimation. They are accompanied
by tools for spatial data preparation, choropleth maps graphing, and spatial-weights matrix
manipulation. These official packages heavily build on earlier community contributions –
most notably the spreg, spivreg, and spmat packages (Drukker, Peng, Prucha, and Raci-
borski 2013a; Drukker, Prucha, and Raciborski 2013b,c), spmap (Pisati 2007), as well as a
collection of further tools for spatial data analysis discussed by Pisati (2001). When it comes
to estimating dynamic spatial panel models, only the community-contributed package xsmle,
developed and described in Belotti, Hughes, and Mortari (2017), is available in Stata, but
without capabilities for instrumental variables.
Spatial econometric models can also be estimated with other statistical software. In MATLAB,
the econometrics toolbox, documented in LeSage and Pace (2009), provides an extensive set of
functions for the estimation of conventional spatial models, with a particular focus on Bayesian
estimation techniques. Elhorst (2014a) provides functions for spatial panel models. The
spreg package within the Python library PySal (Rey and Anselin 2010; Rey, Anselin, Amaral,
Arribas-Bel, Cortes, Gaboardi, Kang, Knaap, Li, Lumnitz, Oshan, Shao, and Wolf 2022) has
similar capabilities as the official Stata commands. The library contains further packages
that can assist with the analysis and visualization of spatial data, and the implementation
of generalized regression techniques. spreg evolved from the self-contained GeoDa software
(Anselin, Li, and Koschinsky 2006). The latter’s recent implementation as a library, libgeoda,
enables integration into other software environments (Anselin, Li, and Koschinsky 2022).
In R, the splm package by Millo and Piras (2012) implements maximum likelihood and gen-
eralized method of moments estimators for static panel models, together with related test
statistics. The packages spdep (Bivand 2023) and spatialreg (Bivand and Piras 2023) provide
a complementary collection of functions for modeling and analyzing spatial dependence in a
cross-sectional context. A large number of further R packages provides additional specialized
functionality for spatial data analysis. For an overview of software for spatial econometrics
and statistics, see Pebesma, Bivand, and Ribeiro (2015), Bivand and Piras (2015), and Bivand
(2022).
Crucially, none of the existing packages is able to combine a spatial model with the common-
factor approach. Spatial models and common-factor models capture different aspects of de-
pendence across individuals. Overlooking either aspect may result in misinterpretations of
the underlying dependence structure. As an example, to the extent that spatial interactions
are driven by a few dominant units in the population, the common-factor approach may be
more appropriate than a spatial model.
Moreover, all of the existing packages impose that the slope coefficients (including the spa-
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tial parameter) are homogeneous across all individuals. In practice, however, the strength of
spatial interactions can vary across individuals, depending on unobserved individual-specific
attributes. Therefore, the restriction of slope parameter homogeneity can pose a major limi-
tation. In comparison, the Stata package spxtivdfreg allows not only for common factors in
the residuals, but also for potential heterogeneity in the slope coefficients. Thus, it permits a
richer formulation and estimation of spatial panel models.
A further advantage of spxtivdfreg is that it is computationally easy to implement compared
to existing methods. In particular, both spxtregress and xsmle require prior knowledge of
Stata’s programming tools for the creation and management of spatial weights matrices, such
as spmatrix or spmat (Drukker et al. 2013a). While the aforementioned spatial tools can be
used with spxtivdfreg as well, our command also allows generating the spatial weights matrix
in an Excel file or in a delimited text file. Thus, no priori knowledge of Stata’s spatial tools
is required, which implies zero “sunk cost” for empirical practitioners. The computational
simplicity of the spxtivdfreg package is enhanced by the fact that the IV estimator of Cui
et al. (2023) requires no bias correction to deal with incidental parameters.
The spxtivdfreg package is a generalization of the existing community-contributed command
xtivdfreg, developed by Kripfganz and Sarafidis (2021). The latter does not allow for spatial
variables in the model, nor for the computation of long-run marginal effects. The extension
to spatial models is far from trivial. For instance, as a standard feature, Stata estimation
commands enable predictions of the dependent variable. However, the naive linear prediction
ignores the dynamic nature of the spatial linkages. Instead, predictions of the reduced-form
mean are required. After solving for the endogenous spatial spillovers, this conditional expec-
tation is nonlinear in the parameters. Similarly, complications also arise in the computation
of (short- and long-run) direct, indirect, and total effects, and especially their standard er-
rors. Given the novelty of this IV approach, it’s important to highlight that it has yet to be
implemented in any other statistical software.
The remainder of the paper is organized as follows. Section 2 outlines the methods developed
by Cui et al. (2023) and Chen et al. (2023). Section 3 introduces the spxtivdfreg in Stata. An
application illustrating the use of the package is provided in Section 4. Section 5 concludes.

2. Spatial models

2.1. Homogeneous spatial model

We consider the following spatial panel data model with N cross-sectional units and T time
periods:

yit = ψ
N∑

j=1
wijyjt + ρyit−1 + x⊤

itβ + γ⊤
y,ify,t + εit, (1)

i = 1, 2, . . . , N , t = 1, 2, . . . , T , where yit denotes the observation on the dependent variable for
individual unit i at time period t, and xit is a k×1 vector of covariates with slope coefficients
β. The lagged dependent variable yit−1 captures dynamic or temporal effects due to state
dependence. The error term of the model is composite: fy,t and γy,i denote ry × 1 vectors of
latent factors and factor loadings respectively, and εit is an idiosyncratic error. We note that
the lagged dependent variable is endogenous w.r.t. the common-factor component, unless one
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is willing to impose highly restrictive assumptions on the time series properties of fy,t.
The “spatial-lag” variable ∑N

j=1wijyjt is a weighted average of the outcome variable in the
neighboring locations for individual i. wij denotes the (i, j)th element of the N × N spatial
weights matrix WN . wij is inversely related to the distance between units i and j. WN is
assumed to be known. The spatial-lag variable is endogenous by construction, as it essentially
represents the formal specification for the equilibrium outcome of a spatial interaction process,
in which the value of yit for one agent is simultaneously determined with that of neighboring
agents (Elhorst 2014b). Such spatial interlinkages among agents may be attributed to peer
effects, spillovers or contagion, as well as strategic interactions, to mention a few.
It is common practice to normalize the spatial weights matrix prior to estimation such that its
largest eigenvalue equals 1. This implies that the spatial-lag coefficient ψ is bounded by 1 as
well and its magnitude can be interpreted similarly to the time-lag coefficient ρ (LeSage and
Pace 2009; Elhorst 2014b). An innocuous way of achieving this is the spectral standardization,
which simply re-scales all elements of the spatial weights matrix by the same proportional
factor. Another common practice in empirical studies is row standardization, wherein each
element of the spatial weights matrix is divided by the sum of its respective row. The strength
of a network link is then measured relative to the sum of all links a unit has with other units.
It must be noted that a row standardization generally alters the implied network structure.
For example, a spatial weights matrix that was symmetric before row standardization may
no longer be so afterwards. As emphasized by Kelejian and Prucha (2010), this can lead to
model misspecification if row standardization is not justified on economic grounds.3

As an example of the model in Equation 1, in Section 4 we analyse panel data on a sample
of US banking institutions, each one observed over 35 consecutive quarters. The dependent
variable captures a measure of credit risk and the vector xit contains a number of risk-taking
determinants, such as bank size, profitability, asset quality and liquidity. In this case, the
lagged dependent variable, yit−1, may absorb idiosyncratic risk vulnerabilities that build up
over time, whereas the spatial variable ∑N

j=1wijyjt captures endogenous spillover effects that
may arise due to multiple balance sheet interdependencies among financial institutions. The
common factors can absorb (among other things) changes in the regulatory framework within
the banking industry during the sample period, as well as market risks and economic condi-
tions, such as interest rate volatility, equity and currency risks, business cycle fluctuations,
to mention a few. These factors may hit the population of all banks simultaneously, albeit
with different intensities, depending on individual bank characteristics, such as the quality of
corporate governance and other sources of latent risk exposure.
To ensure that the covariates are correlated with the factor component (a third source of
endogeneity in the model, in addition to endogeneity in yit−1 and wijyjt), we impose the
following reduced-form data-generating process for xit:

xit = Γ⊤
x,ifx,t + vit, (2)

where fx,t denotes an rx × 1 vector of latent factors, Γx,i denotes an rx × k factor loading
matrix, while vit is an idiosyncratic disturbance of dimension k × 1.4 Note that fy,t and fx,t

3Because the standardization is a user’s modeling choice that is not necessary for estimation, our
spxtivdfreg Stata command neither offers any options nor carries out any checks in this regard. It only
checks whether the dimensions of WN are N × N and the main-diagonal elements are all zero. Stata’s
spmatrix command can be used to normalize the spatial weights matrix before feeding it into spxtivdfreg.

4The above linear factor structure can be viewed as restrictive at first glance. However, as argued by
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can be identical, share some common factors, or they can be completely different but mutually
correlated. Similarly, γy,i and Γx,i can be mutually correlated. This way, xit is endogenous
w.r.t. the common-factor component of the error. On the other hand, to simplify exposition,
we shall assume that xit is strictly exogenous w.r.t. the purely idiosyncratic error, εit. This
allows the formulation of internal instruments based on the existing model covariates. The
case where strict exogeneity w.r.t. εit is violated, is discussed in Section 2.4.
Stacking the T observations for each i yields

yi = ψYwi + ρyi,−1 + Xiβ + Fγy,i + εi;
Xi = FxΓx,i + Vi,

(3)

where yi = (yi1, . . . , yiT )⊤, yi,−1 = (yi0, . . . , yi,T −1)⊤ and εi = (εi1, · · · , εiT )⊤ denote T × 1
vectors, Xi = (xi1, · · · ,xiT )⊤ and Vi = (vi1, . . . ,viT )⊤ are matrices of order T × k, while
Fy = (fy,1, · · · , fy,T )⊤ and Fx = (fx,1, · · · , fx,T )⊤ are of dimensions T × ry and T × rx,
respectively. Finally, Y = (y1, · · · ,yT )⊤ denotes a T × N , matrix and the N × 1 vector wi

represents the ith row of WN . More succinctly, the model in Equation 3 can be written as

yi = Ciθ + ui, (4)

where Ci = (Ywi,yi,−1,Xi), θ =
(
ψ, ρ,β⊤

)⊤
and ui = Fyγy,i + εi.

The IV approach of Cui et al. (2023) involves two stages. In the first stage, the common
factors in Xi are asymptotically projected out using principal components analysis, as in Bai
(2003). Subsequently, the resulting, “defactored” covariates are used as instruments to obtain
consistent estimates of the model parameters, θ. In the second stage, the factors entering ui

are projected out from the model, based on the first-stage IV residuals; next, a second IV
regression is implemented using the same instruments as in stage one.
In particular, define Xi,−τ ≡ Lτ Xi, where Lτ denotes the time series lag operator of order
τ . We shall make use of the convention Xi,−0 = Xi. Moreover, let F̂x,−τ be defined as√
T times the eigenvectors corresponding to the rx largest eigenvalues of the T × T matrices

(NT )−1∑N
i=1 Xi,−τ X⊤

i,−τ , for τ = 0, 1. The matrices that project out F̂x and F̂x,−1 from Xi

and Xi,−1 respectively, are given by

MF̂x
= IT − F̂x

(
F̂⊤

x F̂x

)−1
F̂⊤

x ; and MF̂x,−1
= IT − F̂x,−1

(
F̂⊤

x,−1F̂x,−1
)−1

F̂⊤
x,−1. (5)

The matrix of instruments is formulated as follows:

Ẑi =

 N∑
j=1

wijMF̂x
Xj , MF̂x,−1

Xi,−1, MF̂x
Xi

 , (6)

which is of dimension T × 3k. Loosely speaking, the term ∑N
j=1wijMF̂x

Xj instruments Ywi,
the term MF̂x,−1

Xi,−1 instruments yi,−1, and MF̂x
Xi instruments Xi. All these three terms

are asymptotically uncorrelated with the common-factor component and therefore, under
strict exogeneity w.r.t. εi, they constitute valid instruments.

Freeman and Weidner (2023), such structure can also approximate nonlinear functions, by letting the number
of estimated factors increase. For example a quadratic form in fx,t can be dealt with using rx additional
factors, f +

x,t, where in the true DGP f +
x,t = f 2

x,t.
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The first-stage IV estimator of θ is defined as:

θ̂ =
(
Â⊤B̂−1Â

)−1
Â⊤B̂−1ĉy, (7)

where

Â = 1
NT

N∑
i=1

Ẑ⊤
i Ci; B̂ = 1

NT

N∑
i=1

Ẑ⊤
i Ẑi; ĉy = 1

NT

N∑
i=1

Ẑ⊤
i yi .

Under certain regularity conditions, although θ̂ is
√
NT consistent, the underlying limiting

distribution of the estimator will not be centered around the true value; that is, asymptotic
biases exist (see Cui et al. (2023) for more details). Instead of attempting to correct the
asymptotic bias of this estimator, the authors put forward a second-stage estimator, which is
free from asymptotic bias and is potentially more efficient.5

To implement the second stage, the space spanned by Fy is estimated from the first-stage
IV residuals; i.e., ûi = yi − Ciθ̂. Subsequently, Fy is asymptotically eliminated by pre-
multiplying the data by the following projection matrix:

MF̂y
= IT − F̂y

(
F̂⊤

y F̂y

)−1
F̂⊤

y , (8)

where F̂y is defined as
√
T times the eigenvectors corresponding to the ry largest eigenvalues

of the T × T matrices (NT )−1∑N
i=1 ûiû⊤

i .
The second-stage IV (2SIV) estimator for θ is defined as follows:

θ̃ = (Ã⊤B̃−1Ã)−1Ã⊤B̃−1c̃y, (9)

where

Ã = 1
NT

N∑
i=1

Ẑ⊤
i MF̂y

Ci; B̃ = 1
NT

N∑
i=1

Ẑ⊤
i MF̂y

ûiû⊤
i MF̂y

Ẑi; c̃y = 1
NT

N∑
i=1

Ẑ⊤
i MF̂y

yi .

Theorem 3.2 in Cui et al. (2023) shows that, as N,T → ∞ such that N/T → c where
0 < c < ∞, not only the 2SIV estimator is consistent and asymptotically normally distributed
with variance-covariance matrix Ψ, it is also correctly centered around the true value of the
parameter vector θ.6

In order to allow for heteroskedasticity, the following variance estimator is recommended:

Ψ̃ =
(
Ã⊤B̃−1Ã

)−1
Ã⊤B̃−1Ω̂B̃−1Ã

(
Ã⊤B̃−1Ã

)−1
, (10)

where

Ω̂ = 1
NT

N∑
i=1

Ẑ⊤
i MF̂y

ûiû⊤
i MF̂y

Ẑi. (11)

Standard errors for θ̃ are directly available, based on the square root of the diagonal entries
of the above variance estimator.

5The only other estimator available in the literature that is free from asymptotic bias due to incidental
parameters is the GMM estimator of Juodis and Sarafidis (2022a). However, this estimator does not allow for
spatial lags.

6An intuition of this result is provided in Cui et al. (2022).
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A particularly useful diagnostic in this framework is the so-called overidentifying restrictions
(J) test statistic.7 In the present context, the J statistic is given by

J = 1
NT

(
N∑

i=1
ũ⊤

i MF̂y
Ẑi

)
Ω̂−1

(
N∑

i=1
Ẑ⊤

i MF̂y
ũi

)
, (12)

where ũi = yi − Ciθ̃. The null hypothesis postulates that the moment conditions are valid,
i.e., E

(∑N
i=1 Z⊤

i MFy ui

)
= 0, where

Zi =

 N∑
j=1

wijMFxXj , MFx,−1Xi,−1, MFxXi

 , (13)

and MFy = IT − Fy

(
F⊤

y Fy

)−1
F⊤

y . Under this null hypothesis, the J statistic is asymptoti-
cally χ2 distributed with m−g degrees of freedom, where m denotes the number of instruments
used (i.e., the number of columns in Ẑi), and g equals the total number of slope parameters
estimated in the model. For the standard specification analyzed above, m = 3k and g = k+2.
The J statistic can be used to test whether e.g., the covariates are strictly exogenous w.r.t.
εit, or whether the model parameters are indeed homogeneous across i. Violation of either of
these assumptions invalidates the moment conditions of the model.

2.2. Decomposition of direct and indirect effects
When an explanatory variable in a particular cross-sectional unit changes, not only will the
dependent variable of that unit itself change, but the dependent variables of its neighbouring
units may also change, depending on the extent of their interaction. The first feature is known
in the spatial literature as a “direct effect” and the second one as an “indirect effect”.8

To facilitate exposition, we shall reconsider the original model in Equation 1 and stack the
N observations for each t as follows:

y(t) = ρy(t−1) + ψWN y(t) +
k∑

ℓ=1
βℓxℓ(t) + u(t);

u(t) = Γyfy,t + ε(t),

(14)

where y(t) is of dimension N×1, and similarly for the other variables. Γy =
(
γy,1, . . . ,γy,N

)⊤
,

denotes an N × ry matrix of factor loadings.
Solving the model above yields

y(t) = [(1 − ρL)IN − ψWN ]−1
(

k∑
ℓ=1

βℓxℓ(t)

)
+ [(1 − ρL)IN − ψWN ]−1 u(t). (15)

The matrix of partial derivatives of the expected value of y with respect to the ℓth covariate
in the long-run is given by:[

∂E (y)
∂xℓ1

. . .
∂E (y)
∂xℓN

]
= [(1 − ρ)IN − ψWN ]−1 βℓ. (16)

7See Juodis and Sarafidis (2022b) for details regarding the usefulness of the J test statistic in model
specification involving latent common factors.

8See Elhorst (2012) for further details.
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The equivalent expression for the short-run is obtained by setting ρ = 0 above. Individual-
specific direct effects of xℓ are given by the main-diagonal elements of that matrix. The
off-diagonal elements provide directional pair-specific indirect effects. Following LeSage and
Pace (2009) and Debarsy, Ertur, and LeSage (2012), it is conventional to report an average
of both direct and indirect effects. The average total effect is then the sum of the average
direct and indirect effects. Standard errors for all of these effects are obtained with the Delta
method from the variance estimator in Equation 10.
For the respective effects to be meaningful, the model parameters need to obey a restriction
for dynamic stability. Let ω be the largest eigenvalue of WN . For short-run stability, the
spatial lag coefficient needs to obey ψ < 1/ω. For stability in the long-run, ρ/(1 − ψω) < 1
is required. When the spatial weights matrix is suitably normalized such that the largest
eigenvalue equals one, this conveniently restricts ψ < 1 in the short-run – similar to the usual
requirement on ρ for a stable time series autoregression – and ρ+ψ < 1 in the long-run. Our
Stata package spxtivdfreg still estimates the regression coefficients when those conditions are
violated, but it no longer reports direct, indirect, and total effects.

2.3. Heterogeneous spatial model

We now extend the original model in Equation 4, allowing for heterogeneous slope coefficients.
In particular, the model in compact form is now written as

yi = Ciθi + ui, (17)

where θi =
(
ψi, ρi,β

⊤
i

)⊤
. We shall employ a random-coefficients assumption, such that

θi = θ+ηi, where ηi denotes a random error that is independently and identically distributed
across i with mean zero and variance Ση, such that E (θi) = θ.
As before, we use the IV method in order to estimate θi. Specifically, the matrix of instruments
is formulated as follows:

Ẑi =

 N∑
j=1

wijMF̂x
Xj , MF̂x

MF̂x,−1
Xi,−1, MF̂x

Xi

 , (18)

which remains of dimension T × 3k. The resulting IV estimator for θi is given by

θ̂i =
(
Â⊤

i B̂−1
i Âi

)−1
Â⊤

i B̂−1
i ĉy,i, (19)

where
Âi = T−1Ẑ⊤

i Ci, B̂i = T−1Ẑ⊤
i Ẑi, ĉy,i = T−1Ẑ⊤

i yi. (20)

Under certain regularity conditions, Theorem 3.1 in Chen et al. (2023) shows that as N,T →
∞ with T/N2 → 0, then θ̂i is consistent and asymptotically normally distributed. Once the
individual-specific estimates of θi are obtained, the mean-group estimator of the average of
θi is constructed as follows:

θ̂MG = 1
N

N∑
i=1

θ̂i. (21)

In Theorem 3.2 of Chen et al. (2023), it is demonstrated that θ̂MG is consistent for the
population mean θ, for N,T → ∞ with T/N2 → 0. Furthermore, if N/T 6/5 → 0, then the
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mean-group estimator has the following asymptotic distribution:
√
N(θ̂MG − θ) d−→ N (0, Ση) , as N,T → ∞.

Standard errors for θ̂MG are obtained as the square root of the diagonal elements of the
variance estimator

Σ̂η = 1
N − 1

N∑
i=1

(
θ̂i − θ̂MG

) (
θ̂i − θ̂MG

)⊤
. (22)

2.4. Further generalizations

Under the same theoretical setting and derivations in Cui et al. (2023), the spxtivdfreg pack-
age in Stata can also allow for spatial-time lags, spatial lags of the covariates, or further
autoregressive terms. That is, the original model in Equation 1 can be extended as follows:

yit =
S∑

τ=0
ψτ

N∑
j=1

wijyjt−τ +
S∑

τ=1
ρτyit−τ + x⊤

itβ +
N∑

j=1
wijx⊤

jtδ + γ⊤
y,ify,t + εit, (23)

i = 1, 2, . . . , N , t = 2 − S, . . . , T .9

The model above can be viewed as a dynamic spatial Durbin model with a generalized au-
toregressive structure. The special case where ρτ = 0 for τ > 1 is discussed in detail by
Elhorst (2012). The term ∑N

j=1wijxjt implies the presence of “exogenous network effects” or
“contextual effects”, as discussed in Manski (1993).
In vector form, the model above can be written as

yi =
S∑

τ=0
ψτ Y−τ wi +

S∑
τ=1

ρτ yi,−τ + Xiβ +
k∑

ℓ=1
X(ℓ)wiδ(ℓ) + Fγy,i + εi, (24)

where Y−τ = (y1−τ , · · · ,yT −τ )⊤ denotes a T ×N matrix, and X(ℓ) collects the observations
for the ℓth covariate in a T ×N matrix. Equation 16 for the long-run impacts becomes

[
∂E (y)
∂xℓ1

. . .
∂E (y)
∂xℓN

]
=
[(

1 −
S∑

τ=1
ρτ

)
IN −

S∑
τ=0

ψτ WN

]−1

βℓ. (25)

The short-run impacts are computed as before by setting ρτ = ψτ = 0 for all τ > 0.
Additional instruments for (i) Y−1wi; (ii) yi,−τ ; and (iii) X(ℓ)wi can be employed in a
straightforward manner. For instance, Y−1wi can be instrumented by ∑N

j=1wijMF̂x,−1
Xj−1,

whereas yi,−τ can be instrumented by MF̂x,−τ
Xi,−τ . Lastly, X(ℓ)wi can be instrumented

either by MF̂x
X(ℓ)w̃i or by further lags of MF̂x

X(ℓ)wi, where w̃i denotes the ith row of
WN WN . When WN is sparse, the choice of MF̂x

X(ℓ)w̃i amounts to using as instruments
those (defactored) covariates corresponding to the “2nd-order” neighbours of individual i; i.e.,
the neighbours of the neighbours of unit i.
Finally, so far we have assumed that Xi is exogenous w.r.t. the purely idiosyncratic error,
εi. In practice however, this assumption can often be violated, due to (say) reverse causality

9The total number of spatial-time lags and autoregressive lags can be different. Here we set both equal to
S only for ease of exposition.
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or measurement error. Unlike QMLE procedures, the present method can accommodate
such sources of endogeneity, so long as external instruments are available. To see this, let
Xi = (X(exog)

i ,X(endog)
i ), where X(exog)

i and X(endog)
i refer to those sets of regressors that are

strictly exogenous and endogenous, respectively, w.r.t. εi. Note that X(exog)
i and X(endog)

i are
of dimension T×k(exog) and T×k(endog), respectively. Furthermore, let X+

i = (X(exog)
i ,X(ext)

i ),
a T × k+ matrix with k+ = k(exog) + k(ext), where X(ext)

i denotes the matrix of external
exogenous covariates. We note that X(ext)

i can still be correlated with the factor component,
i.e., it may be subject to a similar data generating process as in Equation 2, so long as it
remains strictly exogenous w.r.t. εi. Define F̂+

x as
√
T times the eigenvectors corresponding

to the m+
x largest eigenvalues of the T ×T matrix ∑N

i=1 X+
i

(
X+

i

)⊤
/NT . The corresponding

projection matrices are defined in the same way as in Equation 8 mutatis mutandis. In this
case, the matrix of instruments becomes

Ẑi =

 N∑
j=1

wijMF̂+
x

X+
j , MF̂+

x,−1
X+

i,−1, MF̂+
x

X+
i

 , (26)

In conclusion, the spxtivdfreg package can deal with all four types of endogeneity discussed
above in reference to the model in Equation 1, namely (i) endogeneity due to the presence of a
spatial lag (ψ ̸= 0); (ii) endogeneity due to the presence of a lagged dependent variable (ρ ̸= 0);
(iii) endogeneity due to potential correlations between the covariates and the common-factor
component; and (iv) endogeneity due to potential correlations between the covariates and the
idiosyncratic error, as in the case of reverse causality.

3. The spxtivdfreg package

3.1. Syntax

The general syntax of spxtivdfreg is similar to standard estimation commands in Stata:

spxtivdfreg depvar indepvars, options

where depvar and indepvars are to be replaced by the respective names of the dependent
and independent variables, and options can be selected from the list below. All variable lists
allow Stata’s factor variable notation for indicator variables and interaction terms, provided
that the package ftools (Correia 2016) is installed, as well as time series operators. To restrict
the estimation sample, Stata’s standard if or in qualifiers can be used following the list of
independent variables. We note that spxtivdfreg requires that the panel dataset is balanced.
Otherwise, the connectedness structure may change over time.

3.2. Options

A key option is spmatrix(), which locates the spatial weights matrix. This option is com-
pulsory. It can be specified in one of following ways:

• spmatrix(filename, import) imports a spatial weights matrix from an Excel file or
a delimited text file by specifying the respective filename;
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• spmatrix(name, spmatrix) or spmatrix(name) declare the spatial weights matrix to
be an SP matrix with the specified name. This must have already been created and
stored in memory with Stata’s official spmatrix command (introduced in Stata 15);

• spmatrix(name, stata) or spmatrix(name, mata) declare the spatial weights matrix
to be a conventional Stata or Mata matrix, respectively.

The command carries out some basic checks on the supplied matrix. The matrix must be
square, have no missing values, and all diagonal entries must equal zero. Importantly, the
command does not check whether the elements wij in the matrix are in the correct order
corresponding to the spatial units in the data set; this remains a responsibility of the users.
The dynamic model components can be specified with the following options:

• splag requests to include a spatial lag of the dependent variable as an additional re-
gressor; i.e., ∑N

j=1wijyjt;

• tlags(#) requests to include # time lags of the dependent variable as additional re-
gressors; i.e., yit−1, . . . , yit−#;

• sptlags(#) requests to include # spatial time lags of the dependent variable as addi-
tional regressors; i.e., ∑N

j=1wijyjt−1, . . . , ∑N
j=1wijyjt−#;

• spindepvars(varlist) requests to include spatial lags of the specified variable list as
additional regressors; i.e., ∑N

j=1wijx⊤
jt.

The estimation relies on sufficiently many instrumental variables. These must be specified
with the iv() option, which has several suboptions for adding spatial components and con-
trolling the defactorization process:

• iv(varlist, suboptions) declares a variable list to be used as instrumental variables;

– Suboption splags requests to include spatial lags of the specified variables as
additional instruments;

– Suboption spiv(varlist) adds spatial lags of further variables not yet included
in the list of instruments. This allows the use of instruments in spatially lagged
form only;

– Suboption fvar(varlist) specifies a list of variables from which to extract the
factors. By default, factors are extracted from all instrumental variables;

– Suboption lags(#) requests to add # time lags of the instrumental variables.
For each lag order, from 0 to #, factors are computed separately. The default is
lags(0);

– Suboption factmax(#) declares the maximum number of factors. The default is
factmax(4);

– Suboption noeigratrio requests using a fixed number of factors according to sub-
option factmax(#), while suboption eigratio requests to use the Ahn-Horenstein
eigenvalue ratio test to compute the number of factors. The latter is the default;
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– Suboptions std and nostd requests extracting factors from standardized or non-
standardized variables, respectively. The latter is the default. Standardization can
sometimes help to stabilize the estimation since principal component analysis can
be sensitive to the scale of the data, as it is well-known;

– Suboptions doubledefact and nodoubledefact request to either include or not
include the variables in fvar(varlist) in a second defactorization stage. This is
asymptotically redundant for the model with homogeneous slopes but can improve
efficiency in the model with heterogeneous slopes. The default is nodoubledefact
for the former and doubledefact for the latter. See Kripfganz and Sarafidis (2021)
for more details regarding this option.

The iv() option can be specified multiple times if it is desired to extract factors sepa-
rately from different sets of instruments. The options factmax(#), noeigratio, std, and
doubledefact/nodoubledefact also exist as standalone options, which can be used to alter
the default for the respective iv() suboptions. Further options are:

• absorb(varlist) specifies categorical variables that identify the fixed effects to be
absorbed. This option requires the packages reghdfe (Correia 2014) and ftools (Correia
2016) to be installed. Typical use is absorb(panelvar) or absorb(panelvar timevar)
for one-way or two-way fixed effects, respectively, where panelvar and timevar are to
be replaced by the respective names of the panel and time identifier variables. These
are typically the variables used to declare the data to be panel data with the command
xtset;

• fstage requests the first-stage IV estimator to be computed instead of the second-
stage estimator. For the model with homogeneous slopes, the first-stage estimator is
asymptotically biased and inefficient. For the model with heterogeneous slopes, this
option is implied because no efficient second-stage estimator exists;

• mg requests to compute the mean-group estimator for the model with heterogeneous
slopes. Group-specific coefficients and standard errors are stored in matrices e(b_mg)
and e(se_mg), respectively;

• mg(#) requests to display the group-specific estimates for group # instead of the mean-
group estimates. This must be a factor level of the panel identifier variable;

• noconstant suppresses the regression intercept;

• level(#) sets the confidence level for the confidence interval in the coefficient output.
The default is level(95);

• noheader and notable suppress display of the coefficient table header and the coefficient
table itself, respectively.

Further standard options are allowed to alter the appearance of the coefficient table; see the
help file for details. To estimate a model without spatial components, the command xtivdfreg
(Kripfganz and Sarafidis 2021) can be used. Aside from the options for the spatial model
components and the time lags, the syntax and options are similar to those described above.
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3.3. Stored results

As is standard for estimation commands in Stata, the stored results can subsequently be
recovered with the e() function:

• The following scalars are stored:
e(N): number of observations;
e(df_m): model degrees of freedom;
e(N_g): number of groups;
e(g_min): smallest group size;
e(g_avg): average group size;
e(g_max): largest group size;
e(sigma2u): variance of error term uit = fit + eit;
e(sigma2f): variance of factor error component fit;
e(rho): fraction of variance due to factor component;
e(chi2_J): Hansen’s J-statistic;
e(df_J): degrees of freedom of Hansen’s J-test;
e(p_J): p-value of Hansen’s J-test;
e(rank): rank of e(V);
e(zrank): number of instruments;
e(fact1): number of factors in the first stage;
e(fact2): number of factors in the second stage;
e(mg_id): group ID for displayed group-specific estimates; only saved with option
mg(#);
e(splag): spatial lag of the dependent variable;
e(tlags): time lags of the dependent variable;
e(sptlags): spatial time lags of the dependent variable;
e(maxeig): maximum eigenvalue of spatial weights matrix.

• The following local macro variables are stored:
e(cmd): the command name, spxtivdfreg;
e(cmdline): command as typed;
e(ivar): variable denoting groups;
e(tvar): variable denoting time;
e(estat_cmd): the program name for postestimation statistics, spxtivdfreg_estat;
e(predict): the program name for postestimation predictions, spxtivdfreg_p;
e(marginsok): predictions allowed by margins;
e(vcetype): title used to label Std. Err.;
e(estimator): fstage, sstage, or mg;
e(properties): b V;
e(depvar): name of dependent variable.

• The following Stata matrices are stored:
e(b): coefficient vector;
e(V): variance-covariance matrix of the estimators;
e(factnum): variable-specific number of factors in the first stage;
e(b_mg): matrix of group-specific coefficiens; only saved with option mg;
e(se_mg): matrix of group-specific standard errors; only saved with option mg.
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• Finally, an indicator for the observations used in the current estimation sample is stored
in the following function:
e(sample): marks estimation sample.

3.4. Postestimation tools
Below the coefficient table, spxtivdfreg displays the Hansen test of the overidentifying restric-
tions. This test can be re-displayed later by using the estat overid command, which does not
require further arguments or options.
For spatial panel data models, direct, indirect, and total impacts based on Equation 16
or Equation 25 are often the key quantities of interest. These can be computed with the
postestimation command estat impact once the model was estimated with spxtivdfreg. If
the model contains time lags or spatial time lags of the dependent variable, we can further
distinguish between short-run and long-run impacts. To compute short-run (sr) and long-run
(lr) impacts for a selected list of independent variables, respectively type

estat impact varlist, sr
estat impact varlist, lr

Specifying a variable list is optional. By default, impacts are computed for all independent
variables, excluding the regression intercept. To include the intercept, option constant needs
to be added. If the estimated coefficients for the spatial lag, time lags, and spatial time lags
violate the model’s dynamic stability condition, estat impact stops with an error message.
Although not recommended, the option force can be used in such a situation to ignore the
violation of the stability condition. Importantly, for the correct computation of the long-
run effects, time lags and spatial time lags of the dependent variable must be specified with
the spxtivdfreg options tlags() and sptlags(), and not directly in the list of independent
variables.
If further analysis shall be performed on the computed impacts, the option post can be used
with estat impact to replace the coefficient vector e(b) in the stored estimation results by
the vector of direct, indirect, and total impacts, and accordingly for the variance-covariance
matrix in e(V). This allows to subsequently compute linear combinations of the impacts with
Stata’s lincom command, or to test linear hypotheses with the test command. To recover
the original estimation results, the model either needs to be refit with spxtivdfreg or the
estimation results should be stored with estimates store before invoking estat impact.
The predict command can be used for predictions after spxtivdfreg:

predict newvar, statistic

where newvar is the name for a new variable to be created. if or in qualifiers can be used in
the standard way to select the relevant observations. statistic can be one of the following:

• rform computes the reduced-form prediction, which is the predicted mean of the de-
pendent variable conditional on the independent variables and any spatial lags of the
independent variables. This is the default;

• direct computes the prediction of the direct mean, which is a unit’s predicted contri-
bution to its reduced-form mean;
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• indirect computes the prediction of the indirect mean, which is the predicted contri-
bution of all other units to the reduced-form mean; i.e., the predicted contribution to
the direct mean subtracted from the reduced-form prediction;

• naive computes the naive-form prediction, which is the linear prediction from the fitted
model;

• xb computes the linear prediction from the fitted model, ignoring the spatial lag of the
dependent variable;

• residuals calculates the residuals; i.e., the naive-form prediction substracted from the
dependent variable.

4. Illustration
As an illustration of our spxtivdfreg package, we utilize a subset of the data used by Cui
et al. (2023). It comprises of 350 U.S. banking institutions, each one observed over the
period 2006:Q1 to 2014:Q4. The sampling period is quite rich as it overlaps with the GFC
(global financial crisis) during 2007-2008, but it also spans the period of increased capital
requirements, which were introduced worldwide in the early 2010s, following the collapse of
major banks. In the U.S. the resulting regulatory framework is known as the “Dodd-Frank
Wall Street Reform and Consumer Act”.

4.1. Model specification

We shall estimate the same model as in Equation 1, where yit ≡ NPLit denotes the ratio of
non-performing loans to total loans for bank i at time period t. This is a popular measure of
credit risk. Higher values of the NPL ratio indicate that banks ex ante took higher lending
risk and therefore they have accumulated ex post more bad loans (see Ding and Sickles 2019);
x1it ≡ INEFFit denotes the time-varying operational inefficiency of bank i at period t, which
is constructed using a cost frontier model with a translog functional form; x2it ≡ CARit stands
for “capital adequacy ratio”, proxied by the ratio of core capital over risk-weighted assets;
x3it ≡ SIZEit is proxied by the natural logarithm of banks’ total assets; x4it ≡ BUFFERit

denotes the amount of capital buffer, and it is computed by subtracting from the core capital
(leverage) ratio the value of the minimum regulatory capital ratio (8%); profitability, x5it ≡
PROFITit, is proxied by the return on equity (ROE), defined as annualized net income
expressed as a percentage of average total equity on a consolidated basis; x6it ≡ QUALITYit is
computed as the total amount of loan loss provisions (LLP) expressed as a percentage of assets;
and x7it ≡ LIQUIDITYit is proxied by the loan-to-deposit (LTD) ratio. When this ratio is
too high, banks may not have enough liquidity to meet unforeseen funding requirements.
The spatial weights matrix has been constructed in three steps. First, we computed Spear-
man’s correlation coefficient corresponding to a bank’s debt ratio. Second, in order to focus
only on the strongest linkages, we set the spatial weights equal to 1 if the correlation exceeds
the 95th percentile within a given row, and 0 otherwise. By convention, the diagonal ele-
ments of WN are set equal to zero, in order to ensure that no individual is treated as its own
neighbor. Finally, each of the rows of WN has been divided by the sum of its corresponding
elements so that ∑j wij = 1 for all i.
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The model is estimated using the 2SIV estimator in Equation 9, combined with the robust
variance estimator in Equation 10. A priori, we remove the firm-specific averages over time,
xℓi, in order to allow explicitly for individual-specific effects; this is done with the command’s
absorb(id) option, where id is the name of the firm identifier variable. INEFF is treated
as endogenous with respect to εit due to reverse causality, and thereby it is instrumented
by the ratio of interest expenses paid on deposits over the value of total deposits, x̃1it ≡
INTERESTit. Reverse causality arises because higher levels of risk imply additional costs
and managerial efforts incurred by banks in order to improve existing loan underwriting
and monitoring procedures. The remaining covariates are treated as exogenous with respect
to εit. However, these covariates can be endogenous w.r.t. the common-factor component,
γ⊤

y,ify,t. The matrix of instruments is of the same form as in Equation 18 with Xi replaced
by X̃i ≡ (x̃1i,x2i, . . . ,x7i), a matrix of order T × 7, where xℓi = xℓi − xℓi is a T × 1 vector
that denotes the ℓth de-meaned covariate corresponding to βℓ, for ℓ = 2, . . . , k, whereas
x̃1i = x̃1i − x̃1i refers to the external instrument. Thus, we make use of 28 moment conditions
in total. With 9 estimated parameters the model is overidentified with 19 degrees of freedom.
Additionally, because principal components analysis can be sensitive to the scale of the data,
the variables are standardized for the computation of matrix F̂x using option std.

4.2. Results

The Stata command line for the estimation is

spxtivdfreg NPL INEFF CAR SIZE BUFFER PROFIT QUALITY LIQUIDITY,
absorb(ID) splag tlags(1) spmatrix("W.csv", import)
iv(INTEREST CAR SIZE BUFFER PROFIT QUALITY LIQUIDITY,
splags lag(1)) std

where options splag and tlags(1) specify that the model should include a spatial-lag vari-
able and a time lag of the dependent variable; the first two right-hand side components in
Equation 1. The spatial weights matrix is imported from a comma-separated text file. This
command line delivers output similar to standard Stata estimation commands; see Table 1.
Besides information about the sample size, the output header indicates the number of instru-
ments and – importantly – the estimated number of factors r̂x = 2 and r̂y = 1. A standard
table of coefficient estimates and standard errors follows, together with the z-statistic and p-
value for the null hypothesis of regressor irrelevance, and associated confidence interval. The
first coefficient, L1.NPL, refers to the lagged dependent variable, where L1 is Stata’s usual
indicator for the first-order time lag. The section titled W lists coefficients of spatially lagged
variables. In the present illustration, only the dependent variable has been spatially lagged.
The final three parameter estimates are self-explanatory from the description in the output.
Here, we see that the factors explain a relevant portion – about one third – of the residual
variance. Finally, the J-test statistic and its corresponding p-value are reported.
In order to illustrate the practical importance of allowing for unobserved factors in the model,
we re-estimate an alternative specification imposing no factors. This is easily done by adding
the option factmax(0) to the above command line. That is,

spxtivdfreg NPL INEFF CAR SIZE BUFFER PROFIT QUALITY LIQUIDITY,
absorb(ID) splag tlags(1) spmatrix("W.xlsx", import)
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Defactored instrumental variables estimation

Group variable: ID Number of obs = 12250
Time variable: TIME Number of groups = 350

Number of instruments = 28 Obs per group min = 35
Number of factors in X = 2 avg = 35
Number of factors in u = 1 max = 35

Second-stage estimator (model with homogeneous slope coefficients)
-----------------------------------------------------------------------------

| Robust
NPL | Coefficient std. err. z P>|z| [95% conf. interval]

-------------+---------------------------------------------------------------
NPL |
L1. | .2898521 .0543794 5.33 0.000 .1832704 .3964339

|
INEFF | .4473777 .1045636 4.28 0.000 .2424368 .6523186

CAR | .0305078 .0057852 5.27 0.000 .019169 .0418465
SIZE | .2225966 .0941614 2.36 0.018 .0380436 .4071496

BUFFER | -.0545049 .0118678 -4.59 0.000 -.0777653 -.0312445
PROFIT | -.0053351 .0018411 -2.90 0.004 -.0089437 -.0017266

QUALITY | .1830412 .0307657 5.95 0.000 .1227415 .2433408
LIQUIDITY | 2.452391 .2696471 9.09 0.000 1.923892 2.980889

_cons | -4.510715 1.311453 -3.44 0.001 -7.081115 -1.940315
-------------+---------------------------------------------------------------
W |

NPL | .3943206 .0848856 4.65 0.000 .2279479 .5606932
-------------+---------------------------------------------------------------

sigma_f | .64162366 (std. dev. of factor error component)
sigma_e | .90381799 (std. dev. of idiosyncratic error component)

rho | .33509009 (fraction of variance due to factors)
-----------------------------------------------------------------------------
Hansen test of the overidentifying restrictions chi2(19) = 18.8250
H0: overidentifying restrictions are valid Prob > chi2 = 0.4681

Table 1: Stata regression output for the full model with homogeneous slopes.

iv(INTEREST CAR SIZE BUFFER PROFIT QUALITY LIQUIDITY,
splags lag(1)) std factmax(0)

Essentially, in this case estimation is implemented in a single stage, as in Equation 7, except
the instruments are based on untransformed covariates rather than on “defactored” ones.
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That is, the matrix of instruments is given by

Ẑi =

 N∑
j=1

wijXj , Xi,−1, Xi

 . (27)

For comparison purposes, we also estimate the original model without a spatially lagged
dependent variable; that is, in Equation 1 we impose ψ = 0, and the matrix of instruments
is formulated as follows:

Ẑi =
(
MF̂x,−1

Xi,−1, MF̂x
Xi

)
. (28)

To estimate this specification, we can remove the option splag from the command line and
the suboption splags from the iv() option.10 Alternatively, we can directly use the xtivdfreg
command, on which spxtivdfreg is based. Note that xtivdfreg does not have a tlags() option,
so that time-lagged regressors need to be specified explicitly with the lag-operator notation:

xtivdfreg NPL L.NPL INEFF CAR SIZE BUFFER PROFIT QUALITY
LIQUIDITY, absorb(ID) iv(INTEREST CAR SIZE BUFFER
PROFIT QUALITY LIQUIDITY, lag(1)) std

The advantage of using spxtivdfreg over xtivdfreg even in the case without spatial lags is
that it enables the computation of long-run impacts with the postestimation command estat
impact, which is demonstrated further below for the case with spatially lagged dependent
variable. Due to the absence of indirect impacts in the non-spatial case, the direct and total
short-run impacts simply equal the regression coefficients. Instead of showing similar Stata
output, we compare the coefficient estimates and standard errors in Table 2.
To begin with, consider the spatial autoregressive specifications with and without a factor
structure in the first two columns. Both ψ̂ and ρ̂ are statistically significant, providing evi-
dence for endogenous spatial interactions and state dependence. However, there are significant
differences in the magnitude of the two estimated coefficients, as well as in terms of the stan-
dard errors of these estimates. The model without factors underestimates the magnitude of
the spatial interactions but grossly overestimates the degree of state dependence. This affects
substantially the estimates of direct/indirect effects, to be reported below. At the same time,
the model without factors incorrectly suggests far more precision in the estimates of these
parameters. Regarding the model without spatial lags, we notice that some coefficient esti-
mates remain fairly similar. However, changes in others are non-negligible. Most notably, we
observe a larger estimate of the inefficiency coefficient when spatial terms are ignored. The
number of estimated factors remains the same as in the initial model.
The positive coefficient of operational inefficiency provides support for the so-called “bad
management hypothesis” (e.g., see Fiordelisi, Marques-Ibanez, and Molyneux 2011), which
postulates that managers’ failure to control costs efficiently, can result in poor monitoring of
loans and thereby higher default rates. When factors are accounted for, the estimated effect
is stronger than without factors. Other notable differences between the two specifications
include: (i) while all other coefficients are statistically significant at least at the 5% level
when factors are accounted for, the estimated effect of size becomes negligible when factors
are ignored; (ii) the estimated coefficient for liquidity is almost three times as large in the

10Similarly, to estimate a model without a time lag, the option tlags(1) can be removed.
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Full model Without factors Without spatial lag

ψ̂ (WN NPLt)
0.394∗∗∗

(0.085)
0.288∗∗∗

(0.038)

ρ̂ (NPLt−1) 0.290∗∗∗

(0.054)
0.594∗∗∗

(0.034)
0.323∗∗∗

(0.055)

β̂1 (INEFFt)
0.447∗∗∗

(0.105)
0.366∗∗∗

(0.107)
0.638∗∗∗

(0.116)

β̂2 (CARt)
0.031∗∗∗

(0.006)
0.017∗∗∗

(0.004)
0.030∗∗∗

(0.006)

β̂3 (SIZEt)
0.223∗∗

(0.094)
0.089

(0.061)
0.346∗∗∗

(0.096)

β̂4 (BUFFERt)
-0.055∗∗∗

(0.012)
-0.025∗∗

(0.010)
-0.045∗∗∗

(0.016)

β̂5 (PROFITt)
-0.005∗∗∗

(0.002)
-0.006∗∗∗

(0.002)
-0.004∗∗

(0.002)

β̂6 (QUALITYt)
0.183∗∗∗

(0.031)
0.283∗∗∗

(0.029)
0.183∗∗∗

(0.036)

β̂7 (LIQUIDITYt)
2.452∗∗∗

(0.270)
0.843∗∗∗

(0.180)
2.534∗∗∗

(0.311)
r̂x 2 0 2
r̂y 1 0 1

J-test 18.825
[0.468]

48.151
[0.000]

8.174
[0.226]

Table 2: Coefficient estimates; see Section 4.1 for details on the model specification.

former specification compared to no factors. In the latter specification, this risk-enhancing
effect of a high LTD ratio is thus substantially underestimated.
The J-test indicates that the null hypothesis of valid overidentifying restrictions cannot be
rejected at conventional significance levels in the model with factors. In contrast, when we
do not allow for latent factors, the p-value of the J-test statistic decreases drastically, and the
null hypothesis of correct model specification is rejected. This demonstrates the importance
of allowing for common factors in the residuals in this model. Note also that failure to reject
the null hypothesis in the first specification provides support to the homogeneous model. This
is because pooling the model across i when the parameters are individual-specific, renders the
instruments used invalid.11

The coefficient estimates discussed above can be regarded as immediate effects before any
spillovers or adjustments to deviations from a long-run equilibrium are taken into account.
Long-run direct, indirect, and total effects are obtained by simply typing

estat impact, lr

which yields the output in Table 3 for the model with factors.12

11See Juodis and Sarafidis (2022a) for a recent example.
12The short-run results are qualitatively similar, and so we do not provide them here to save space. They

20



Long-run impacts
-----------------------------------------------------------------------------

| Delta-method
| Impact std. err. z P>|z| [95% conf. interval]

-------------+---------------------------------------------------------------
direct |

INEFF | .6470588 .1593924 4.06 0.000 .3346554 .9594623
CAR | .0441245 .0092325 4.78 0.000 .0260292 .0622198

SIZE | .3219497 .1416728 2.27 0.023 .044276 .5996233
BUFFER | -.0788324 .0183176 -4.30 0.000 -.1147342 -.0429306
PROFIT | -.0077164 .0023773 -3.25 0.001 -.0123757 -.003057

QUALITY | .2647392 .0466629 5.67 0.000 .1732816 .3561968
LIQUIDITY | 3.546983 .4454284 7.96 0.000 2.673959 4.420007

-------------+---------------------------------------------------------------
indirect |

INEFF | .7694677 .3352809 2.29 0.022 .1123291 1.426606
CAR | .0524719 .0237326 2.21 0.027 .0059569 .0989868

SIZE | .3828552 .1975749 1.94 0.053 -.0043845 .770095
BUFFER | -.0937457 .0428643 -2.19 0.029 -.1777581 -.0097333
PROFIT | -.0091761 .0046348 -1.98 0.048 -.0182603 -.000092

QUALITY | .3148218 .1408165 2.24 0.025 .0388266 .590817
LIQUIDITY | 4.217992 1.742264 2.42 0.015 .8032163 7.632767

-------------+---------------------------------------------------------------
total |

INEFF | 1.416526 .4274849 3.31 0.001 .5786715 2.254382
CAR | .0965964 .0291942 3.31 0.001 .0393768 .1538159

SIZE | .7048049 .3099048 2.27 0.023 .0974027 1.312207
BUFFER | -.1725781 .0541498 -3.19 0.001 -.2787098 -.0664465
PROFIT | -.0168925 .0063692 -2.65 0.008 -.0293759 -.0044091

QUALITY | .579561 .1670612 3.47 0.001 .2521271 .9069949
LIQUIDITY | 7.764974 1.90367 4.08 0.000 4.033851 11.4961

-----------------------------------------------------------------------------

Table 3: Stata output for the long-run impacts.

The output is separated into three sections for the direct, indirect, and total impacts, respec-
tively. Again, to save space, we do not provide output in the same format for the restricted
model without factor structure; however, we compare the estimates of the two models in Table
4. Total effects are simply the sum of direct and indirect effects. These results provide a more
complete picture of the cumulative effects over time and across banks. Due to the stronger
persistence estimate, ρ̂ = 0.594 compared to ρ̂ = 0.290, those cumulative effects now tend to
be higher for most variables in the model without factors. While the immediate impact of
inefficiency is estimated to be smaller when factors are left out, the total long-run impact is

can be easily recovered by replacing the lr option with the sr option in the estat impact postestimation
command line. The respective output table has the same structure as the one for the long-run impacts.
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actually more than double the impact corresponding to the model with factors. Similarly, the
differences in the liquidity impacts are much less pronounced over the long-run than indicated
by the regression coefficients above.

With factors Without factors
Direct Indirect Total Direct Indirect Total

INEFF 0.647∗∗∗ 0.769∗∗ 1.417∗∗∗ 0.959∗∗∗ 2.157∗∗ 3.117∗∗

CAR 0.044∗∗∗ 0.052∗∗ 0.097∗∗∗ 0.045∗∗∗ 0.100∗∗ 0.145∗∗

SIZE 0.322∗∗ 0.383∗ 0.705∗∗ -0.233 0.523 0.756
BUFFER -0.079∗∗∗ -0.094∗∗ -0.173∗∗∗ -0.065∗∗ -0.147 -0.212∗

PROFIT -0.008∗∗∗ -0.009∗∗ -0.017∗∗∗ -0.016∗∗∗ -0.036∗∗ -0.053∗∗∗

QUALITY 0.265∗∗∗ 0.315∗∗ 0.580∗∗∗ 0.741∗∗∗ 1.666∗∗∗ 2.407∗∗∗

LIQUIDITY 3.547∗∗∗ 4.218∗∗ 7.765∗∗∗ 2.209∗∗∗ 4.967∗∗ 7.176∗∗

Table 4: Decomposition of long-run effects.

Still, considerable differences persist between the two specifications. In the light of the earlier
J-test result, the impact estimates from the model with factors remain more reliable. Across
variables, the long-run indirect impacts appear stronger than the direct impacts, highlighting
the importance of accounting for spatial spillover effects.
Even though the J-test does not reject the model with homogeneous slopes, it can still be
instructive to run the estimation with heterogeneous slopes. This is easily achieved by adding
the mg option to the earlier command line. The Stata output is shown in Table 5. We notice –
somewhat unexpectedly – that some of the coefficient estimates differ substantially from the
earlier ones, even at an order of magnitude for the coefficients of size and capital buffer, which
is at odds with the earlier J-test result. In addition, the spatial spillover effects disappear
under heterogeneous slopes. Consequently, computing direct, indirect, and total spillovers
does not provide any additional insights here. A possible explanation for these results could
be that the MG estimator is susceptible to outliers. While there is insufficient parameter
heterogeneity to trigger a rejection of the J-test in finite samples, a few outliers can result in
seemingly contradicting results from the MG estimator. The larger standard errors of the MG
estimates compared to the estimation with homogeneous coefficients might also be indicative
of outliers. However, an increase in standard errors is expected because the MG estimator
is only

√
N -consistent and thereby less efficient than 2SIV.13 After estimation, group-specific

coefficients and standard errors can be extracted from the matrices e(b_mg) and e(se_mg)),
respectively, which could then be used for further analysis. For a specific group – say, the bank
with ID number 101 – the estimates can alternatively be displayed as standard estimation
output with option mg(101). However, while it would be worth investigating the potential
influence of outliers, a further exploration is beyond the scope of this paper.

5. Summary and discussion

13MG estimation only proceeds in one stage because the second stage would require factors to be estimated
from the residuals of group-specific estimations when coefficients are heterogeneous; see footnote 9 in Kripfganz
and Sarafidis (2021). This would likely be even more inefficient.
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Defactored instrumental variables estimation

Group variable: ID Number of obs = 12250
Time variable: TIME Number of groups = 350

Number of instruments = 28 Obs per group min = 35
Number of factors in X = 2 avg = 35

max = 35

Mean-group estimator (model with heterogeneous slope coefficients)
-----------------------------------------------------------------------------

| Robust
NPL | Coefficient std. err. z P>|z| [95% conf. interval]

-------------+---------------------------------------------------------------
NPL |
L1. | .3005247 .0148501 20.24 0.000 .271419 .3296303

|
INEFF | .7587664 .1583511 4.79 0.000 .4484039 1.069129

CAR | .218054 .0262755 8.30 0.000 .166555 .2695531
SIZE | 2.004026 .3385335 5.92 0.000 1.340513 2.66754

BUFFER | -.3763774 .0420252 -8.96 0.000 -.4587453 -.2940095
PROFIT | -.0179663 .005944 -3.02 0.003 -.0296164 -.0063161

QUALITY | .2872525 .1386973 2.07 0.038 .0154107 .5590942
LIQUIDITY | 6.330179 .5059499 12.51 0.000 5.338536 7.321823

_cons | -29.01259 4.166689 -6.96 0.000 -37.17915 -20.84603
-------------+---------------------------------------------------------------
W |

NPL | .031593 .0511028 0.62 0.536 -.0685667 .1317528
-----------------------------------------------------------------------------

Table 5: Stata regression output for the model with heterogeneous slopes.

The package spxtivdfreg introduces two IV estimators for estimating large-N spatial, dy-
namic panel data models with unobserved common factors. The slope coefficients can be
either homogeneous or heterogeneous. The command accommodates a flexible specification
of instruments. The spatial weights matrix can also be generated in an Excel file or a delimited
text file and subsequently imported directly into Stata using spxtivdfreg.

Version requirements
The spxtivdfreg command is part of the xtivdfreg package (Kripfganz and Sarafidis 2021,
version 1.4.2 or newer), which can be installed from the Statistical Software Components
(SSC) archive using the following command line in Stata:

ssc install xtivdfreg
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The package requires at least Stata version 13.0. Some features require newer versions, such
as importing a spatial weights matrix from a file (Stata 14.0), using a spatial weights matrix
created with spmatrix (Stata 15.0), and standardizing variables for the factor extraction with
option std (Stata 16.1). The use of option absorb() requires the packages reghdfe (Correia
2014, version 6.12.3) and ftools (Correia 2016, version 2.49.1) to be installed, which are
available from SSC as well.
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