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Instruments and Moment Conditions

Recall that the simple IV or 2SLS estimator with instruments zit builds on the
first-stage regression

∆yi ,t−1 = z′
itπ + νit

with homogeneous coefficients π.
If the process is not stationary, the first-stage coefficients are generally
heterogeneous:

∆yi ,t−1 = z′
itπt + νit

Imposing homogeneous first-stage coefficients still yields consistent estimates.
However, exploiting the first-stage heterogeneity can lead to efficiency gains.
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Instruments and Moment Conditions

We can easily implement an estimator with first-stage time-series heterogeneity by
interacting the Kz instruments zit with time dummies ds = I(s = t),
s = 3, 4, . . . , T :

∆yi ,t−1 =
T∑

s=3
(dszit)′πs + νit

This yields a total of Kz(T − 2) instruments.
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Instruments and Moment Conditions

Re-consider the first-differenced regression model in vector form:

∆yi = λ∆yi ,−1 + ∆εi

with single instrument

zi = yi ,−2 =


yi1
yi2
...

yi ,T−2


The simple IV estimator is

λ̂IV =
( N∑

i=1
z′

i∆yi,−1

)−1 N∑
i=1

z′
i∆yi = λ +

( N∑
i=1

z′
i∆yi,−1

)−1 N∑
i=1

z′
i∆εi
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Instruments and Moment Conditions
Interacted with time dummies, the matrix of instruments becomes the diagonal
matrix

Zi =


yi1 0 · · · 0
0 yi2

...
... . . . 0
0 · · · 0 yi ,T−2


The corresponding 2SLS estimator is

λ̂2SLS =

 N∑
i=1

∆y′
i,−1Zi

( N∑
i=1

Z′
iZi

)−1 N∑
i=1

Z′
i∆yi,−1

−1

×
N∑

i=1
∆y′

i,−1Zi

( N∑
i=1

Z′
iZi

)−1 N∑
i=1

Z′
i∆yi
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Instruments and Moment Conditions

By the law of large numbers, consistency of λ̂IV requires

plim
N→∞

1
N

N∑
i=1

z′
i∆εi = plim

N→∞

1
N

N∑
i=1

T∑
t=3

yi ,t−2∆εit = E
[ T∑

t=3
yi ,t−2∆εit

]
= 0

while for consistency of λ̂2SLS we need

plim
N→∞

1
N

N∑
i=1

Z′
i∆εi = plim

N→∞

1
N

N∑
i=1


yi1∆εi3
yi2∆εi4

...
yi ,T−2∆εiT

 = E




yi1∆εi3
yi2∆εi4

...
yi ,T−2∆εiT


 = 0

The 2SLS estimator with expanded instruments exploits the moment conditions
E [yi,t−2∆εit ] = 0 separately for each time period t, while for the simple IV estimator
they only need to hold on average, 1

T−2
∑T

t=3 E [yi,t−2∆εit ] = 0.
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Instruments and Moment Conditions

Arellano and Bond (1991) noticed that there are further moment conditions that
can be exploited:

E [yi ,t−s∆εit ] = 0

for s ≥ 2 (not just s = 2). This yields heterogeneous first-stage regressions in
which the available number of instruments is growing with t:

∆yi ,t−1 =
t−1∑
s=2

πt,t−syi ,t−s + νit

Thus, for t = 3 there is the single instrument yi1, for t = 4 there are two instruments
(yi1, yi2), and eventually for t = T there are T − 2 instruments (yi1, yi2, . . . , yi,T−2).
This results in a total of Kz = (T−1)(T−2)

2 instruments.
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Instruments and Moment Conditions

The matrix of instruments becomes the block-diagonal matrix

Zi =


yi1 0 0 · · · 0 0 · · · 0
0 yi1 yi2 0 0 · · · 0
... . . .
0 0 0 yi1 yi2 · · · yi ,T−2


In matrix notation, the corresponding 2SLS estimator is

λ̂2SLS =
(
∆y′

−1Z(Z′Z)−1Z′∆y−1
)−1 ∆y′

−1Z(Z′Z)−1Z′∆y
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Instruments and Moment Conditions

In matrix notation, the moment conditions are

E [Z′
i∆εi ] = 0

For any deterministic Kz × Kz̃ transformation matrix R,

E [R′Z′
i∆εi ] = 0

still yields valid moment conditions.
If R is a square matrix of full rank, the resulting 2SLS estimator is unaffected
because

ZR(R′Z′ZR)−1R′Z′ = ZRR−1(Z′Z)−1R′−1R′Z′ = Z(Z′Z)−1Z′
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Instruments and Moment Conditions

With a suitable choice of R, which adds up and interchanges various columns of
Zi , we can thus re-organize the instruments equivalently:

RZi =


yi1 0 0 · · · 0
yi2 yi1 0 · · · 0
yi3 yi2 yi1 0
...

...
... . . .

yi ,T−2 yi ,T−3 yi ,T−4 · · · yi1

0 0 · · · 0
yi2 0 · · · 0
yi3 yi2 0
...

... . . .
yi ,T−2 yi ,T−3 · · · yi2

· · ·


The first column is the Anderson and Hsiao (1981) instrument yi,−2. The difference
of the first column in the second block and the second column in the first block
corresponds to the instrument ∆yi,−2.
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Instrument Reduction Techniques

The model is strongly overidentified unless T is very small. The number of
instruments increases quadratically in T .
Asymptotically (as N →∞ with T fixed), more valid instruments in principle
improve the efficiency of the estimator.
As discussed by Roodman (2009) in some detail, too many instruments relative to
N can cause biased coefficient and standard error estimates and weakened
specification tests.

Intuitively, looking at the extreme case, when the number of instruments approaches
the sample size, the instruments perfectly predict the regressor in the first stage.
Finite-sample biases are aggravated if the additional instruments are weak:

Cov(yi,t−s , ∆yi,t−1) = − λs−2

1 + λ
σ2

ε → 0

as s →∞ (for s ≥ 2).
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Instrument Reduction Techniques

It is usually beneficial to give up some efficiency in favor of lower bias by reducing
the number of instruments (Kiviet, 2020). Technically, this is done by choosing a
rank-deficient transformation matrix R, which removes and/or linearly combines
some columns from Zi .
One such instrument reduction approach – commonly referred to as “collapsing” –
just keeps the first block of the (re-organized) instrument matrix:

RcolZi =


yi1 0 0 · · · 0
yi2 yi1 0 · · · 0
yi3 yi2 yi1 0
...

...
... . . .

yi ,T−2 yi ,T−3 yi ,T−4 · · · yi1


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Instrument Reduction Techniques

Another approach – “curtailing” – limits the lag depth – i.e., the maximum
number of instruments in each period’s first-stage regression:

∆yi ,t−1 =
1+p∑
s=2

πt,t−syi ,t−s + νit

For example, if p = 2, this becomes

Rcur Zi =


yi1 0 0 0 0 · · · 0 0
0 yi1 yi2 0 0 · · · 0 0
0 0 0 yi2 yi3 0 0
... . . .
0 0 0 0 0 yi ,T−3 yi ,T−2


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Instrument Reduction Techniques

Both approaches can be combined:

RccZi =


yi1 0
yi2 yi1
yi3 yi2
...

...
yi ,T−2 yi ,T−3


The resulting 2SLS estimator differs from the one using both Anderson and Hsiao
(1981) instruments zit = (∆yi,t−2, yi,t−2), which are equivalent to
zit = (yi,t−2, yi,t−3), because the latter drops time period t = 3 from the estimation
(due to the missing value for yi0), while in the above instrument matrix Zi (and its
transformations) all missing values are replaced by zeros.
This leads to a slightly peculiar situation, where the first-stage coefficients are
homogeneous for t > 3, but the second coefficient in the first stage for t = 3 is
restricted to 0.
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Instrument Reduction Techniques

A more logical approach might be to treat the first stage for the initial time
period separately from the subsequent ones, which leads to the following
transformed instrument matrix:

Rc̃cZi =


yi1 0 0
0 yi2 yi1
0 yi3 yi2
...

...
0 yi ,T−2 yi ,T−3


This idea is attributed to Jan Kiviet, but it has not received any attention in the
empirical literature.
Using only the lower-right block of the above instrument matrix would now be
equivalent to the estimator with both Anderson and Hsiao (1981) instruments.
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Instrument Reduction Techniques
Simulated distributions (kernel density estimates) based on 1,001 replications:

yit = λyi,t−1 + αi + εit , where εit ∼ N (0, 1), and αi ∈ {−1, 0, 1}; N = 300, T = 10
Stationary initial observations: yi1 = αi

1−λ + νi1, where νi1 ∼ N
(

0, 1
1−λ2

)
All Arellano and Bond (1991) GMM estimators are efficient one-step estimators.

λ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

QML

AH (1981)

AB (1991)

AB (1991), col.

AB (1991), cur.

AB (1991), cur./col.

(a) λ = 0.2 (low persistence)

λ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

QML

AH (1981)

AB (1991)

AB (1991), col.

AB (1991), cur.

AB (1991), cur./col.

(b) λ = 0.8 (high persistence)
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Weighting Matrix

Recall that the first-differenced errors ∆εit exhibit first-order serial correlation if
the untransformed idiosyncratic error component εit is serially uncorrelated:

Var(∆εi) = σ2
εDD′ = σ2

ε



2 −1 0 · · · 0
−1 2 −1 0
0 −1 2 . . .
... . . . . . . −1
0 0 −1 2


where D is the first-difference transformation matrix introduced earlier.

The 2SLS estimator is inefficient.
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Weighting Matrix

Let Z∆i be the matrix of instruments (after application of any instrument
reduction technique), such that E [Z′

∆i∆εi ] = 0.
The asymptotic variance-covariance matrix of the moment functions is

Var(Z′
∆i∆εi) = E [Z′

∆i∆εi∆ε′
iZ∆i ] = σ2

εE [Z′
∆iDD′Z∆i ]

An efficient GMM estimator uses the optimal weighting matrix

W =
(

1
N

N∑
i=1

Z′
∆iDD′Z∆i

)−1

σ2
ε can be dropped because the estimator is invariant to multiplication of W by a

constant scalar.
Since DD′ is a known matrix, no preliminary estimator is needed.
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Weighting Matrix

In practice, even if we retain the assumption of serially uncorrelated idiosyncratic
errors εit , the homoskedasticity assumption usually needs to be relaxed.

The optimal weighting matrix then requires a preliminary consistent estimator:

W(λ̂1) =
(

1
N

N∑
i=1

Z′
∆i∆ε̂i(λ̂1)∆ε̂i(λ̂1)′Z∆i

)−1

where ∆ε̂i(λ̂1) = ∆yit − λ̂1∆yi,t−1 are the first-differenced residuals, and λ̂1 is
typically the inefficient but consistent one-step GMM estimator λ̂1 = λ̂GMM(W) with
the weighting matrix W that would be optimal under homoskedasticity.
As noted before, iterated GMM and continously-updating GMM are alternatives to
the simple two-step procedure.
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Standard Errors

Since all moment functions are linear in the parameters, the (one-step, two-step,
or iterated) GMM estimator can be obtained in closed form. For example, the
two-step estimator is

λ̂GMM(W(λ̂1)) =
(
∆y′

−1Z∆W(λ̂1)Z′
∆∆y−1

)−1
∆y′

−1Z∆W(λ̂1)Z′
∆∆y

If the one-step estimator was used with non-optimal weighting matrix, robust
standard errors should be computed with the conventional “sandwich” formula:

V̂ar(λ̂GMM(W)) =
(
∆y′

−1Z∆WZ′
∆∆y−1

)−1 ∆y′
−1Z∆WV̂WZ′

∆∆y−1

×
(
∆y′

−1Z∆WZ′
∆∆y−1

)−1

where V̂ = W(λ̂GMM(W))−1 is a consistent estimate of Var(Z′
∆i∆εi).
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Standard Errors

For the two-step GMM estimator with optimal weighting matrix, GMM standard
errors computed with the conventional formula

V̂ar(λ̂GMM(W(λ̂1))) =
(
∆y′

−1Z∆W(λ̂1)Z′
∆∆y−1

)−1

can be severely downward biased in small samples. This is due to the ignored
sampling variation in the estimation of the preliminary estimator λ̂1.

This can be accounted for with the Windmeijer (2005) correction, which is now
standard practice.
A further refinement was proposed by Hwang, Kang, and Lee (2022). Their
“doubly-robust” standard errors additionally correct for a bias resulting from the
estimator’s overidentification.
Similar adjustments need to be made for the iterated GMM estimator (Hansen and
Lee, 2021).
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Additional Regressors

Additional regressors xit can be accommodated in a straightforward way, assuming
that they are not time invariant:

∆yit = λ∆yi ,t−1 + ∆x′
itβ + εit

Maintaining the assumption of serially uncorrelated εit , valid instruments can be
found by classifying the regressors xit = (x1,it , x2,it , x3,it) as strictly exogenous
(x1,it), predetermined (x2,it), or endogenous (x3,it).

The matrix of instruments Z∆ = (Z∆,y−1 , Z∆,x1 , Z∆,x2 , Z∆,x3) can be partitioned into
separate blocks for each variable. Each block has a similar structure to the one in
the simple panel AR(1) model. Instrument reduction techniques should generally be
applied unless T is very small relative to N.
Further variables validly excluded from the regression model could be added as
instruments, if available.
All results about estimator efficiency and robust standard errors carry over.
Instruments obtained from regressors xit can also provide additional identification
strength for the coefficient λ of the lagged dependent variable.
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Additional Regressors

Strictly exogenous regressors x1,it satisfy the moment conditions

E [x1,i ,t−s∆εit ] = 0
for all s.

It is customary to restrict s ≥ 0.
Predetermined regressors x2,it satisfy the moment conditions

E [x2,i ,t−s∆εit ] = 0
for all s ≥ 1.

Notice that variables are classified as predetermined with respect to εit . This implies
that they are endogenous with respect to ∆εit .

Endogenous regressors x3,it satisfy the moment conditions

E [x3,i ,t−s∆εit ] = 0

for all s ≥ 2.
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Serial Correlation

The instruments have been obtained under the assumption of serially uncorrelated
idiosyncratic errors εit (which corresponds to first-order serial correlation in ∆εit).
If we suspect first-order serial correlation in εit (which corresponds to
second-order serial correlation in ∆εit), the instrument yi ,t−2 becomes invalid, but
all further lags yi ,t−3, yi ,t−4, . . . remain valid (and similarly for regressors xit).
A feasible strategy for dealing with serial correlation would thus be to adjust the
starting lag for the instruments accordingly.
However, keep in mind that deeper lags tend to be weaker instruments.

A more promising strategy is often to view serially correlated errors as evidence of
model misspecification, and to adjust the model appropriately with the aim to obtain
a dynamically complete model. This can be done by adding higher-order lags of the
dependent variable as further regressors or by adding distributed lags of xit .
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Overidentification Test

It is standard practice to test for the validity of the Kz − 1− Kx overidentifying
restrictions with the Sargan (1958) test for the one-step GMM estimator,

J = N m(θ̂GMM(W))′ W m(θ̂GMM(W)) d→ χ2(Kz − 1− Kx )

or the Hansen (1982) test for the two-step GMM estimator,

J = N m(θ̂GMMW(θ̂1))′ W(θ̂1) m(θ̂GMMW(θ̂1)) d→ χ2(Kz − 1− Kx )

where θ = (λ,β′)′

This is not a test of the validity of all Kz instruments. It requires the maintained
assumption that any 1 + Kx instruments (or linear combinations of instruments) are
valid.
The Sargan (1958) test based on the one-step GMM estimator is asymptotically
invalid if the weighting matrix is not optimal.
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Overidentification Test

A rejection of the overidentifying restrictions is often not informative about the
type of model misspecification. The leading cases worth investigating are:

The classification of regressors into strictly exogenous, predetermined, and
endogenous variables might be incorrect.
The model might not be dynamically complete, possibly due to omitted
(higher-order) lags of the dependent variable or regressors, which can cause serial
correlation of the idiosyncratic error term.

Blundell and Bond (2000) provide a theoretical justification for an error term with
MA(1) structure resulting from measurement error.
Separate tests for serial correlation can aid in identifying the source of the problem.

Other relevant explanatory variables might be omitted from the model.
Importantly, as emphasized by Roodman (2009), overidentification tests tend to
substantially underreject the null hypothesis of no model misspecification when
there are (too) many instruments, thus lulling applied researchers into a false
sense of security.
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Incremental Overidentification Tests

To assess the correct regressor classification, incremental overidentification tests
in the spirit of Eichenbaum, Hansen, and Singleton (1988) can be used.

Assuming that the moment conditions E [x2,i,t−s∆εit ] = 0 are always valid for s > 2,
predetermined regressors satisfy the additional moment restrictions
E [x2,i,t−1∆εit ] = 0.
Similarly, assuming that it can be taken for granted that E [x1,i,t−s∆εit ] = 0 for
s > 1, strictly exogenous regressors satisfy the additional moment restrictions
[x1,it∆εit ] = 0.
This suggests to contrast two estimators with and without the additional moment
functions. A rejection then indicates that the variables under consideration should be
classified as endogenous rather than predetermined.

Sebastian Kripfganz (2023) Advanced Dynamic Panel Data Methods 27/71



Difference GMM Specification Tests Transformations Nonlinear Moments System GMM Conclusion

Incremental Overidentification Tests

The test statistic in its basic form is

J2 − J1
d→ χ2(df2 − df1)

where J1
d→ χ2(df1) is the overidentification test statistic from the maintained

model, and J2
d→ χ2(df2) is the overidentification test statistic from the extended

model with the additional moment restrictions.
In finite samples, the incremental overidentification test statistic can become
negative because the moment functions are weighted with separately estimated
weighting matrices.
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Incremental Overidentification Tests

As an alternative that is guaranteed to be nonnegative, the relevant partition of
the estimated weighting matrix from the extended model can be used to weight
the moment functions from the maintained model (Newey, 1985).
It is important to keep in mind that (incremental) overidentification tests are only
meaningful if the baseline specification is correct.

There must be sufficiently many valid moment conditions to (just-)identify all
parameters, which is an untestable assumption.
For the incremental test, the maintained model must be correctly specified.

Sebastian Kripfganz (2023) Advanced Dynamic Panel Data Methods 29/71



Difference GMM Specification Tests Transformations Nonlinear Moments System GMM Conclusion

Incremental Overidentification Tests

An alternative to the incremental overidentification test is a generalized Hausman
(1978) test, directly contrasting the two estimators with and without the moment
functions under investigation:

H = (θ̂2 − θ̂1)′(Var(θ̂2 − θ̂1))−1(θ̂2 − θ̂1) d→ χ2(min(df2 − df1, 1 + Kx ))

A robust estimate of Var(θ̂2 − θ̂1)) in the spirit of White (1982) should be used that
does not rely on one of the estimators to be fully efficient.
When the number of additional overidentifying restrictions, df2 − df1, is not larger
than the number of contrasted coefficients, 1 + Kx , then the generalized Hausman
test is asymptotically equivalent to incremental overidentification tests.
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Underidentification Tests

The coefficients are underidentified if there is insufficient correlation of the
instruments with the regressors, as an extreme case of weak identification.
Windmeijer (2021) highlights that underidentification tests are overidentification
tests in an auxiliary regression of any endogenous variable (in the wider sense) on
the remaining regressors:

∆yi ,t−1 = ∆x′
itψ + ξit

with the same instruments Z∆i as before.
The null hypothesis is that the model is underidentified – i.e., a rejection of the test
is desirable.
Sanderson and Windmeijer (2016) propose closely related weak-identification tests.
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Transformed Level GMM Estimator

Re-consider the simple panel AR(1) model. With the first-difference
transformation matrix D, such that ∆εi = Dεi and DιT−1 = 0, the moment
conditions can be rewritten in terms of the untransformed level errors, as noted by
Arellano and Bover (1995):

E [Z′
∆i∆εi ] = E [Z′

∆iD(αiιT−1 + εi)] = E [Z′
Di(αiιT−1 + εi)] = 0

where ZDi = D′Z∆i .
This does not mean that differencing of the model is equivalent to differencing of
the instruments, because D ̸= D′

For example, if T = 4, the (unreduced) instrument matrix becomes

D′Z∆i =

−1 0
1 −1
0 1

(yi1 0 0
0 yi1 yi2

)
=

−yi1 0 0
yi1 −yi1 −yi2
0 yi1 yi2

 = ZDi
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Transformed Level GMM Estimator

The “difference GMM” estimator can then be written in terms of level variables,
here for the one-step estimator:

λ̂∆GMM(W) =
(
y′

−1ZDWZ′
Dy−1

)−1 y′
−1ZDWZ′

Dy

with weighting matrix

W =
(

1
N

N∑
i=1

Z′
DiZDi

)−1

= 1
N (Z′

DZD)−1

such that the one-step GMM estimator equals the 2SLS estimator for the level
model.
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Forward-Orthogonal Deviations

Instead of first differencing, Arellano and Bover (1995) suggest to transform the
model into deviations from their forward mean:

−→
∆yit = λ

−→
∆yi ,t−1 +

−→
∆εit

where

−→
∆yit =

√
T − t + 1

T − t

(
yit −

1
T − t + 1

T∑
s=t

yis

)
−→
∆yi ,t−1 =

√
T − t + 1

T − t

(
yi ,t−1 −

1
T − t + 1

T∑
s=t

yi ,s−1

)
−→
∆εit =

√
T − t + 1

T − t

(
εit −

1
T − t + 1

T∑
s=t

εis

)
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Forward-Orthogonal Deviations

In compact notation, the model in forward-orthogonal deviations is
−→
∆yi︸︷︷︸
−→
∆yi2−→
∆yi3

...
−→
∆yi ,T−2



= λ
−→
∆yi ,−1︸ ︷︷ ︸
−→
∆yi1−→
∆yi2

...
−→
∆yi ,T−2



+
−→
∆εi︸︷︷︸
−→
∆εi2−→
∆εi3

...
−→
∆εi ,T−1


The transformation is again orthogonal to any time-invariant variable, especially the
unit-specific error component αi .
The scaling factor

√
T−t+1

T−t ensures that Var(εit) = Var(
−→
∆εit) = σε under

homoskedasticity.
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Forward-Orthogonal Deviations

While the first-differenced model is defined for periods t = 3, 4, . . . , T , the
deviations from forward means can be computed for periods t = 2, 3, . . . , T − 1.
In the forward-orthogonally transformed model, already the first lag of the
dependent variable qualifies as an instrument:

E [yi ,t−s
−→
∆εit ] = 0

for s ≥ 1 (instead of s ≥ 2 as in the first-differenced model).
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Forward-Orthogonal Deviations

Recall that any transformation of the moment conditions

E [RZ′
∆iDεi ] = 0

with nonsingular transformation matrix R yields identical estimates.
As long as Z∆i is of the unreduced block-diagonal structure with all available
instruments, Arellano and Bover (1995) show that the instrument transformation
matrix R can be chosen in a particular block-diagonal way such that

RZ′
∆iDεi = Z′

∆iKεi

for any upper-trapezoidal model transformation matrix K – i.e., all elements outside
of the upper triangle of matrix K equal 0 – that satisfies KιT−1 = 0
This holds for forward-orthogonal deviations, where K = F such that Fεi =

−→
∆εi .
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Forward-Orthogonal Deviations

The (T − 2)× (T − 1) forward-orthogonal transformation matrix is

F =



√
T−1
T−2 0 · · · 0

0
√

T−2
T−3

...
... . . . 0
0 · · · 0

√
2




T−2
T−1 − 1

T−1 − 1
T−1 · · · − 1

T−1
0 T−3

T−2 − 1
T−2 · · · − 1

T−2
... . . . . . .
0 · · · 0 1

2 −1
2


where the diagonal matrix at the front contains the variance-equating scaling
factors.

Due to the scaling factor, FF′ = IT−2
F = SD is a nonsingular transformation of the first-difference transformation matrix
D.
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Forward-Orthogonal Deviations
To illustrate the model transformation equivalence, consider the case for T = 4:

(√
3
2 0

0
√

2

)(
− 2

3 − 1
3

0 − 1
2

)
0
0

0 0
√

2
(
− 1

2
)


︸ ︷︷ ︸
R

yi1 0
0 yi1
0 yi2


︸ ︷︷ ︸

Z′
∆i

(
∆εi3
∆εi4

)
︸ ︷︷ ︸

∆εi

=

yi1 0
0 yi1
0 yi2


︸ ︷︷ ︸

Z′
∆i

(√
3
2 0

0
√

2

)(
− 2

3 − 1
3

0 − 1
2

)
︸ ︷︷ ︸

S

(
−1 1 0
0 −1 1

)
︸ ︷︷ ︸

D

εi2
εi3
εi4


︸ ︷︷ ︸

εi

=

yi1 0
0 yi1
0 yi2


︸ ︷︷ ︸

Z′
∆i

(√
3
2 0

0
√

2

)( 2
3 − 1

3 − 1
3

0 1
2 − 1

2

)
︸ ︷︷ ︸

F

εi2
εi3
εi4


︸ ︷︷ ︸

εi

=

yi1 0
0 yi1
0 yi2


︸ ︷︷ ︸

Z′
∆i

(−→
∆εi2−→
∆εi3

)
︸ ︷︷ ︸

−→
∆εi
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Forward-Orthogonal Deviations

First differencing and forward-orthogonal deviations yield identical estimators
λ̂∆GMM(W) = λ̂−→

∆GMM(W) if all available instruments are used without
application of any instrument reduction techniques.
The estimators differ in unbalanced panel data sets with gaps.

A missing observation in the time series for yit in period t implies a loss of two
observations in first differences, because neither ∆yit nor ∆yi,t−1 can be computed.
However, while we similarly cannot compute

−→
∆yit , any other

−→
∆yis for s ̸= t can still

be computed by skipping the missing observation in the calculation of the forward
means. In such a scenario, forward-orthogonal deviations thus retain more
information and lead to more efficient estimation.
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Forward-Orthogonal Deviations

Similar to the use of first-differenced instruments ∆yi ,t−s , s ≥ 2, for the
first-differenced model, Hayakawa (2009) and Hayakawa, Qi, and Breitung (2019)
proposed backward-orthogonally transformed instruments

←−
∆yi ,t−s , s ≥ 1, for the

forward-orthogonally transformed model, where

←−
∆yi ,t−s =

√
t − s

t − s − 1

(
yi ,t−s −

1
t − s

t−s∑
l=1

yil

)

This becomes relevant if the initial observations only satisfy

E
[(

yi1 −
α

1− λ

)
−→
∆εit

]
= 0

instead of the joint assumption E [yi1εit ] = 0 and E [αiεit ] = 0 for t ≥ 2.
There are no instruments available anymore for t = 2 in this case.
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Forward-Orthogonal Deviations

Instruments for additional regressors xit can be found in a similar way:
Strictly exogenous regressors x1,it satisfy the moment conditions

E [x1,i,t−s
−→
∆εit ] = 0

for all s.
Predetermined regressors x2,it satisfy the moment conditions

E [x2,i,t−s
−→
∆εit ] = 0

for all s ≥ 0.
Endogenous regressors x3,it satisfy the moment conditions

E [x3,i,t−s
−→
∆εit ] = 0

for all s ≥ 1.
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Forward-Orthogonal Deviations

Based on the moment conditions E [Z′−→
∆ i
−→
∆εi ] = 0, where Z−→

∆ i = Z∆i when no
instrument reduction is applied, the optimal one-step weighting matrix under
homoskedasticity is

W =
(

1
N

N∑
i=1

Z′−→
∆ i

FF′Z−→
∆ i

)−1

=
(

1
N

N∑
i=1

Z′−→
∆ i

Z−→
∆ i

)−1

An optimal weighting matrix for two-step estimation is obtained in the usual way
as

W(λ̂1) =
(

1
N

N∑
i=1

Z′−→
∆ i
−→
∆ ε̂i(λ̂1)

−→
∆ ε̂i(λ̂1)′Z−→

∆ i

)−1

where
−→
∆ ε̂i(λ̂1) =

−→
∆yit − λ̂1

−→
∆yi ,t−1 are the forward-orthogonally transformed

residuals, and λ̂1 is a consistent preliminary estimator.
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Within-Groups Transformation

In general, the within-groups transformation Mι that yields deviations from
within-group means, such that Mιεi = ∆̄εi , is not suitable for models with
dynamic feedback (as in the case of a lagged dependent variable). Because
∆̄εit = εit − 1

T−1
∑T

s=2 εis is not just a function of future but also all past errors,
most instruments become invalid.
We can still use it to formulate valid moment conditions for the subset of strictly
exogenous variables x1it :

E [Z′
∆̄,x1,i∆̄εi ] = 0
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Combination of Model Transformations

It can be reasonable to combine different model transformations.
Because it is less intuitive (although perfectly valid) to use future observations – i.e.,
leads – as instruments for strictly exogenous regressors x1it , we could instead jointly
use the moment conditions

E [x1it∆̄εit ] = 0

E [x1i,t−s
−→
∆εit ] = 0

for s ≥ 0. The former – akin to the moment conditions for the traditional FE
estimator – are only valid for strictly exogenous regressors, while the latter are also
valid for predetermined regressors.
An incremental overidentification test of the strict-exogeneity assumption can then
be used to contrast estimators with and without the instruments for the
within-groups transformed model.
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Combination of Model Transformations

Let Z∆̄i contain the instruments for the within-groups transformed model and
Z−→

∆ i the instruments for the forward-orthogonally transformed model. The
combined moment conditions are

E
[(

Z′
∆̄i∆̄εi

Z′−→
∆ i
−→
∆εi

)]
= E

[(
Z′

∆̄iMιεi
Z′−→

∆ i
Fεi

)]
= E

[(
MιZ∆̄i F′Z−→

∆ i

)′
εi

]
= 0

Because all model transformations can be recast as instrument transformations, the
resulting estimator is a conventional GMM estimator for the untransformed level
model with instruments Zi = (MιZ∆̄i , F′Z−→

∆ i)
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Nonlinear Moment Conditions

Absence of serial correlation in εit is a necessary condition for the validity of many
of the instruments.
Ahn and Schmidt (1995) suggest to explicitly exploit this assumption in the form
of the additional T − 3 quadratic moment conditions:

E [(αi + εiT )∆εit ] = 0

for t = 3, 4, . . . , T − 1, provided that T ≥ 4
These additional moment conditions improve efficiency and help with potential
identification problems when λ→ 1, without requiring additional assumptions.
For the purpose of avoiding first-stage overfitting, a “collapsed” version can be
implemented as

E
[

(αi + εiT )
T−1∑
s=3

∆εis

]
= 0
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Nonlinear Moment Conditions

Under the weaker initial-observations assumption mentioned earlier (which only
guarantees validity of ∆yi ,t−s instead of yi ,t−s , s ≥ 2 as valid instruments for the
first-differenced model), these nonlinear moment conditions need to be replaced by

E [∆yi ,t−2∆εi ,t−1 + (∆εi ,t−1)2 + ∆yi ,t−1∆εit ] = 0

for t = 4, 5, . . . , T , as noted by Chudik and Pesaran (2022).
In this case, it is further required that there are no endogenous regressors x3it in the
model.
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Nonlinear Moment Conditions

Under homoskedasticity (and the stronger initial-observations assumption), Ahn
and Schmidt (1995) propose to replace the nonlinear moment conditions by the
T − 2 nonlinear moment conditions

E [(αi + ε̄i)∆εit ] = 0

for t = 2, 3, . . . , T , and the additional T − 3 linear moment conditions

E [yi ,t−2∆εi ,t−1 − yi ,t−1∆εit ] = 0

for t = 4, 5, . . . , T
Thus, homoskedasticity implies an extra T − 2 overidentifying restrictions, which can
be tested with an incremental overidentification test or a generalized Hausman test.
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Nonlinear Moment Conditions

The linear moment functions – e.g., m∆i(θ) = Z′
∆iDεi for the first-differenced

model, or m−→
∆(θ) = Z′−→

∆ i
Fεi for the forward-orthogonally transformed model –

can be stacked with the nonlinear moment functions mnl ,i(θ):

mi(θ) =
(

m∆i(θ)
mnl ,i(θ)

)

With nonlinear moment functions, no closed-form solution exists. The GMM
estimator is obtained by numerically minimizing the objective function:

θ̂GMM(W(θ̂1)) = arg min
θ̂

m(θ̂)′ W(θ̂1) m(θ̂)

An optimal weighting matrix for one-step GMM estimation does not exist in this
case. A two-step, iterated, or continuously-updating GMM estimator is required for
efficient estimation.
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Instruments for Level Model

Instead of exploiting nonlinear moment conditions to address the problem of weak
identification when λ→ 1, further linear moment conditions can be found for the
untransformed level model by imposing a stronger initial-observations condition.
In addition to serially uncorrelated εit and E [yi1εit ] = 0, Blundell and Bond
(1998) consider the assumption E [∆yi2αi ] = 0

In the simple panel AR(1) model, the latter assumption can be rewritten as

E
[(

yi2 −
αi

1− λ

)
αi

]
= 0

That is, a unit’s (initial) deviation from their (unit-specific) long-run equilibrium αi
1−λ

– “steady state” – should be unrelated to the long-run equilibrium itself.
As Roodman (2009) notes, this creates a tension because this assumption is more
likely to be violated when λ is close to 1 – i.e., when any deviations persist for long
times – which is precisely the situation for which the new assumption is intended to
provide additional identification strength.
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Instruments for Level Model

A sufficient but not necessary condition for this initial-observations assumption to
hold is mean stationarity of the process for yit (jointly with the processes for any
xit regressors).
The recursive structure of the model then implies

E [∆yi ,t−s(αi + εit)] = 0

for s ≥ 1 and all t ≥ 3 (not just the initial observations).
Thus, lagged first differences of the dependent variable qualify as instruments for the
untransformed level model.
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Instruments for Level Model

It turns out that beyond ∆yi ,t−1 all deeper lags ∆yi ,t−s , s ≥ 2, become redundant
when the new level moment conditions are combined with the moment conditions
E [yi ,t−s∆εit ], s ≥ 2, for the model in first differences.

For example, if T = 4, the matrix with all (transformed) instruments for the level
model becomes

(D′Z∆i , Zli) =

 −yi1 0 0
yi1 −yi1 −yi2
0 yi1 yi2

0 0 0
∆yi2 0 0

0 ∆yi2 ∆yi3


but column 5 equals a linear combination of columns 2 to 4 – column 3 minus
column 2 plus column 4.
This redundancy result only holds if no instrument reduction techniques are applied,
but it is customary to only include the first lagged difference, ∆yi,t−1, as an
instrument for the level model in any case.
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Instruments for Level Model

The matrix of T − 2 non-redundant additional instruments for the level model
therefore becomes

Zli =



0 0 · · · 0
∆yi2 0 · · · 0

0 ∆yi3
...

... . . . 0
0 · · · 0 ∆yi ,T−1


To reduce the number of instruments, matrix Zli can be collapsed into the column
vector Zli = (0, ∆yi2, ∆yi3, . . . , ∆yi,T−1)′, imposing homogeneity on the first-stage
coefficients.
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Instruments for Level Model

Non-redundant instruments for additional regressors xit can be added accordingly
under the additional assumption E [∆xitαi ] = 0 (Blundell, Bond, and Windmeijer,
2001):

Strictly exogenous regressors x1,it satisfy the Kx1(T − 1) non-redundant moment
conditions

E [∆x1,it(αi + εit)] = 0

Likewise, predetermined regressors x2,it satisfy the Kx2(T − 1) moment conditions

E [∆x2,it(αi + εit)] = 0

Endogenous regressors x3,it satisfy the Kx3(T − 2) moment conditions

E [∆x3,i,t−1(αi + εit)] = 0
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Instruments for Level Model

If instead of E [∆xitαi ] = 0 the regressors xit satisfy the stronger “random-effects”
assumption E [xitαi ] = 0, the following additional Kx non-redundant moment
conditions arise:

E [xi1(αi + εi2)] = 0

Consequently, this assumption can be tested with an incremental overidentification
test or a generalized Hausman test.
In practice, one might also replace E [∆x1,it(αi + εit)] = 0 by E [x1,it(αi + εit)] = 0
for all t (and similarly for x2,it and x3,i,t−1). However, the estimator is invariant to
this alteration.
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System GMM as Level GMM

Combining the instruments for the level model with those for the transformed
model (either in first differences or forward-orthogonal deviations) yields a
so-called “system GMM” estimator.
Regarding the origin of the name “system GMM”, notice that the stacked
moment functions can be written as(

m∆i(θ̂)
mli(θ̂)

)
=
(

Z′
∆i∆εi
Z′

liεi

)
=
(

Z∆i 0
0 Zli

)′(
∆εi

αiιT−1 + εi

)

which constitutes a system of the transformed and untransformed model.

Sebastian Kripfganz (2023) Advanced Dynamic Panel Data Methods 57/71



Difference GMM Specification Tests Transformations Nonlinear Moments System GMM Conclusion

System GMM as Level GMM

While the system approach is intuitive for selecting valid instruments, it is often
convenient to write the estimator in terms of the level model only:

E
[(

Z′
∆i∆εi

Z′
li(αiιT−1 + εi)

)]
= E

[(
Z′

∆iD(αiιT−1 + εi)
Z′

li(αiιT−1 + εi)

)]

= E
[(

D′Z∆i Zli
)′

(αiιT−1 + εi)
]

= 0

We can even combine multiple model transformations, if applicable:

E


 Z′

∆̄i∆̄εi

Z′−→
∆ i

−→
∆εi

Z′
li(αiιT−1 + εi)


 = E

Z′
∆̄iMι(αiιT−1 + εi)

Z′−→
∆ i

F(αiιT−1 + εi)
Z′

li(αiιT−1 + εi)


= E

[(
MιZ∆̄i F′Z−→

∆ i Zli
)′ (αiιT−1 + εi)

]
= 0
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Time Effects

Recall that common time-specific effects can be accounted for by including a set
of time dummies ds = I(s = t) as regressors:

yi = λyi ,−1 + Xiβ + αiιT−1 + εi

where

Xi =


1 0 · · · 0 x′

i2
1 1 0 x′

i3
... . . . ...
1 0 1 x′

iT

 or Xi =


1 0 · · · 0 x′

i2
0 1 0 x′

i3
... . . . ...
0 0 1 x′

iT


depending on whether or not an intercept – i.e., a vector of ones – is included
instead of the time dummy d2.
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Time Effects

The time dummies can be treated as uncorrelated with both error components αi
and εit . Consequently, they can be instrumented by themselves. Lagged time
dummies are redundant due to their deterministic nature.
With balanced panel data, once time dummies are instrumented for the
untransformed model, they become redundant as instruments for the transformed
model.

For example, if T = 4, the respective (transformed) instrument matrices (without
intercept) would be

(D′Z∆,d,i , Zl,d,i) =

 −1 0
1 −1
0 1

1 0 0
0 1 0
0 0 1


where column 1 equals column 4 minus column 3, and column 2 equals column 5
minus column 4.
An equivalent redundancy result holds if the first dummy is replaced by an intercept.
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Time-Invariant Regressors

Since any of the considered model transformations is orthogonal to any variable
that is constant over time, KιT−1 = 0 for K ∈ {D, F, M}, the effects of
time-invariant regressors ci can only be identified in the untransformed model:

yit = λyi ,t−1 + x′
itβ + c′

iγ + αi + εit

If the coefficients γ are not of particular interest, the time-invariant regressors can
simply be subsumed under the unit-specific error component: α̃i = c′

iγ + αi

If the coefficients γ are the objects of interest (or if including them helps to make
it more plausible that time-varying regressors xit are uncorrelated with αi),
appropriate instruments for the level model are needed.
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Time-Invariant Regressors

In empirical research, instead of explicitly specifying strong instruments for
time-invariant regressors, identification of γ is occasionally implicitly assumed
through the overidentifying restrictions from the other instruments under the
Blundell and Bond (1998) initial-observations assumption.
However, if E [∆yi ,t−1αi ] = 0 holds, it is difficult to justify that at the same time
E [∆yi ,t−1ci ] ̸= 0, and similarly for (lagged) first differences of xit .

Unless such an approach can be theoretically justified (by making peculiar
assumptions on the data-generating process), any estimates of γ obtained this way
are driven by spurious finite-sample correlation between the instruments and the
time-invariant regressors (Kripfganz and Schwarz, 2019).
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Time-Invariant Regressors

It might be appropriate to assume that E [ciαi ] = 0 (and E [ciεit ] = 0), in which
case the variables ci can serve as their own instruments.
Alternatively, a Hausman and Taylor (1981) strategy could be employed. If it
holds for (a subset of) time-varying regressors xit that E [xitαi ] = 0 and E [xitc′

i ] is
of full rank, then xit can serve as instruments for ci .
Any other omitted variables satisfying valid exclusion restrictions could potentially
serve as instruments as well.
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Time-Invariant Regressors

As another alternative, if E [ciαi ] ̸= 0, it might be reasonable to assume that
E [ci α̃i ] = 0 after including within-group averages x̄i as additional regressors in the
spirit of the “correlated random-effects” approach proposed by Mundlak (1978):

yit = λyi ,t−1 + x′
itβ + c′

iγ + x̄′
iϕ+ α̃i︸ ︷︷ ︸

αi

+εit

This requires that xit are strictly exogenous. If they are predetermined, x̄i could be
replaced by the initial observations xi1 (and possibly also yi1), as noted by Kripfganz
and Schwarz (2019).
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Time-Invariant Regressors

The identifying assumptions E [ciαi ] = 0, E [ci α̃i ] = 0, or E [xitαi ] = 0 cannot be
tested (in their entirety).

If there are more relevant instruments – e.g., because Kx > Kc under the Hausman
and Taylor (1981) approach – it is possible to test at least the overidentifying
restrictions in the usual way.
If the coefficients γ are just-identified – e.g., under the assumption E [ciαi ] = 0 – an
incremental overidentification test comparing estimators with and without the
instruments ci is not helpful, because the coefficients γ are not identified without
those instruments; see discussion above.

If the coefficients γ are overidentified, incorrect exogeneity assumptions about the
added instruments can cause inconsistency not just of the estimator for γ but also
for λ and β.
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Time-Invariant Regressors

As an alternative to estimating all coefficients in a single stage, Kripfganz and
Schwarz (2019) propose a two-stage procedure:

1 Estimate the coefficients λ and β with any consistent estimator (BC-MM, QML,
GMM) from

yit = λyi,t−1 + x′
itβ + α̃i + uit

where α̃i = c′
iγ + αi

2 Estimate the coefficients γ from

yit − λ̂yi,t−1 − x′
it β̂ = c′

iγ + αi + ζit(λ̂, β̂)

Because the errors ζit(λ̂, β̂) = εit − (λ̂− λ)yi,t−1 − x′
it(β̂ − β) are a function of the

first-stage estimation uncertainty, standard errors need to be corrected accordingly.
The two-stage approach is generally less efficient than a single-stage GMM
estimator, but the first stage is robust to misspecification at the second stage.
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Weighting Matrix

Under the classical error components structure with serially uncorrelated εit and
homoskedasticity of both εit and αi , an optimal weighting matrix would be a
function of the unknown variance ratio τ = σ2

α/σ2
u:

W =
(

1
N

N∑
i=1

Z′
i(τιT−1ι

′
T−1 + IT−1)Zi

)−1

where Zi is the matrix of all (transformed) instruments – e.g., Zi = (D′Z∆i , Zli).
Efficient one-step GMM estimation is infeasible, unless all moment conditions refer
to the transformed model (because DiιT−1 = 0) or τ is known.

An optimal weighting matrix W(θ̂1) = ( 1
N
∑N

i=1 Zi
′ε̂i(θ̂1)ε̂i(θ̂1)′Zi)−1 requires a

preliminary consistent estimator θ̂1.
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Weighting Matrix

The leading candidate for an initial weighting matrix is

W =
(

1
N

N∑
i=1

Z′
iZi

)−1

=
(

1
N

N∑
i=1

(
Z∆i

′DiD′
iZ∆i Z∆i

′DiZli
Zli

′D′
iZ∆i Zli

′Zli

))−1

which leads to 2SLS estimation and is optimal when σ2
α = 0 (Windmeijer, 2000).

Alternatively, Blundell, Bond and Windmeijer (2001) suggested

W =
(

1
N

N∑
i=1

(
Z∆i

′DiD′
iZ∆i 0

0 Zli
′Zli

))−1

while Arellano and Bover (1995) and Blundell and Bond (1998) proposed

W =
(

1
N

N∑
i=1

(
Z∆i

′Z∆i 0
0 Zli

′Zli

))−1
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Weighting Matrix

The iterated GMM estimator avoids the lack of finite-sample robustness to the
(arbitrary) choice of the initial weighting matrix.

yit = λyi,t−1 + αi + εit , where εit ∼ N (0, 1), αi ∈ {−1, 0, 1}, and λ = 0.2; T = 5
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Specification Test

As mentioned earlier, depending on the particular application, the validity of the
assumption E [∆yi2αi ] = 0 might be contested. If there is no clear guidance from
economic theory, a statistical test is desirable.
As noted by Blundell and Bond (1998), the T − 3 nonlinear moment conditions
obtained earlier become redundant once those additional T − 2 instruments for
the level model are introduced.

Thus, there is 1 overidentifying restriction due to the Blundell and Bond (1998)
initial-observations assumption, which can be tested with an incremental
overidentification test or a generalized Hausman test
To assess this assumption, it is (unfortunately) common practice to contrast the
“system GMM” estimator with a “difference GMM” estimator (without nonlinear
moment functions). A test based on this comparison has lower power to detect a
violation of the initial-observations assumption. Instead, nonlinear moment functions
should be included in the baseline estimator (Magazzini and Calzolari, 2020).
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Interim Conclusion
The recursive nature of the model provides a potentially large number of internal
instruments.

Their validity relies on the absence of (higher-order) serial correlation. Testing is
essential.

Too many (weak) instruments hamper the reliability of the estimator. Unless T is
very small (relative to N), instrument reduction techniques should be employed.

Collapsing seems preferable, possibly combined with curtailing when T becomes
relatively large.

To address the concern of weak instruments when the process is very persistent,
additional nonlinear moment conditions can be useful.
The popular “system GMM” estimator adds further comparatively strong
instruments. However, it is often not straightforward to justify the required
initial-observations assumption.
Correctly classifying all of the regressors as strictly exogenous, predetermined, or
endogenous is another crucial task.
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