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Panel AR(1) Model

Let us initially consider a simple autoregressive panel model of order 1 – panel
AR(1) – with error components structure:

yit = λyi ,t−1 + αi + εit

with homoskedastic and serially uncorrelated εit .
Assuming that the process is dynamically stable – i.e., |λ| < 1 – and started in the
infinite past, we can iterate the process backwards to obtain

yit = αi
1 − λ

+
∞∑

s=0
λsεi ,t−s

The properties of the process are the same if it started at time period t = 1 with a
draw from the stationary distribution:

yi1 = αi
1 − λ

+ 1√
1 − λ2

εi1
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Estimation Methods

There are three leading approaches to obtain consistent estimates of λ, given that
yi ,t−1 is predetermined with respect to εit and

Cov(yi ,t−1, αi + εit) = Cov(yi ,t−1, αi) = σ2
α

(1 − λ)2 ̸= 0

Bias-corrected (BC) estimation, utilizing the known bias expression for the FE
estimator.
(Quasi-)maximum likelihood (QML) estimation, making further assumptions about
the initial observations.
Instrumental-variables (IV) and generalized method of moments (GMM) estimation,
exploiting knowledge about the model dynamics to construct valid instruments.
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Least-Squares Estimation

Many estimators can be regarded as special cases of general estimation methods.
The FE estimator is the pooled OLS estimator for the transformed model

∆̄yit = λ∆̄yi ,t−1 + ∆̄εit

where

∆̄yit = yit − ȳi , ȳi = 1
T − 1

T∑
t=2

yit

∆̄yi ,t−1 = yi ,t−1 − ȳi ,−1, ȳi ,−1 = 1
T − 1

T∑
t=2

yi ,t−1

∆̄εit = εit − ε̄i , ε̄i = 1
T − 1

T∑
t=2

εit
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Least-Squares Estimation

The FE estimator minimizes the sum of squared (transformed) residuals:

λ̂FE = arg min
λ̂

1
N(T − 1)

N∑
i=1

T∑
t=2

(∆̄yit − λ̂∆̄yi ,t−1)2

The first-order condition can be written as

1
N

N∑
i=1

mFE ,i(λ̂FE ) = 0

where

mFE ,i(λ) = 1
T − 1

T∑
t=2

∆̄yi ,t−1 (∆̄yit − λ∆̄yi ,t−1)︸ ︷︷ ︸
∆̄εit
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Least-Squares Estimation

It is often convenient to use more compact vector notation. By stacking all
time-series observations above each other, the untransformed regression model for
unit i can be written as

yi︸︷︷︸
yi2
yi3
...

yiT



= λ yi ,−1︸ ︷︷ ︸
yi1
yi2
...

yi ,T−1



+αi ιT−1︸ ︷︷ ︸
1
1
...
1



+ εi︸︷︷︸
εi2
εi3
...
εiT


Similarly, the transformed model becomes

∆̄yi = λ∆̄yi ,−1 + ∆̄εi

Sebastian Kripfganz (2023) Advanced Dynamic Panel Data Methods 6/54



Estimation Methods Bias Correction ML Estimation IV Estimation Serial-Correlation Tests Conclusion

Least-Squares Estimation

Even more compactly, we can stack all observations above each other:

y︸︷︷︸
y1
y2
...

yN



= λ y−1︸︷︷︸
y1,−1
y2,−1

...
yN,−1



+ α︸︷︷︸
α1
α2
...
αN



⊗ιT−1 + ε︸︷︷︸
ε1
ε2
...

εN


where ⊗ denotes the Kronecker product, such that

α ⊗ ιT−1 =


α1ιT−1
α2ιT−1

...
αNιT−1


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Least-Squares Estimation

The FE estimator as the solution to the first-order condition
mFE (λ̂FE ) = 1

N
∑N

i=1 mFE ,i(λ̂FE ) = 0 can then be written as

λ̂FE =
( N∑

i=1

T∑
t=2

(∆̄yi ,t−1)2
)−1 N∑

i=1

T∑
t=2

∆̄yi ,t−1∆̄yit

=
( N∑

i=1
∆̄y′

i ,−1∆̄yi ,−1

)−1 N∑
i=1

∆̄y′
i ,−1∆̄yi

= (∆̄y′
−1∆̄y−1)−1∆̄y′

−1∆̄y

The estimator is only defined for T ≥ 3:
For each unit, one effective observation is lost due to the lagged dependent variable
and another degree of freedom is absorbed by removing the unit-specific mean.

Sebastian Kripfganz (2023) Advanced Dynamic Panel Data Methods 8/54



Estimation Methods Bias Correction ML Estimation IV Estimation Serial-Correlation Tests Conclusion

Least-Squares Estimation

Let the residual maker matrix that partials out the unit-specific intercepts (in line
with the Frisch-Waugh-Lovell theorem) be

Mι = IT−1︸ ︷︷ ︸
1 0 · · · 0
0 1

...
... . . . 0
0 · · · 0 1



− ιT−1(ι′
T−1ιT−1)−1ι′

T−1︸ ︷︷ ︸
1

T−1


1 1 · · · 1
1 1

...
... . . . 1
1 · · · 1 1


such that (ι′

T−1ιT−1)−1ι′
T−1yi = 1

T−1
∑T

t=2 yit and thus
Mιyi = yi − ȳiιT−1 = ∆̄yi .

Mι is idempotent – i.e., MιMι = Mι – and symmetric – i.e, M′
ι = Mι
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Least-Squares Estimation

Because MιιT−1 = 0, pre-multiplying the regression model with matrix Mι

eliminates the unit-specific intercept αi . The transformed regression model can
thus be written as

Mιyi = λMιyi ,−1 + Mιεi

(IN ⊗ Mι)y = λ(IN ⊗ Mι)y−1 + (IN ⊗ Mι)ε

and the FE estimator as

λ̂FE =
( N∑

i=1
y′

i ,−1Mιyi ,−1

)−1 N∑
i=1

y′
i ,−1Mιyi

= (y′
−1(IN ⊗ Mι)y−1)−1y′

−1(IN ⊗ Mι)y
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Least-Squares Estimation

Perhaps surprisingly, the FE estimator can also be obtained from the
first-differenced model:

∆yit = λ∆yi ,t−1 + ∆εit

where ∆yit = yit − yi ,t−1, ∆yi ,t−1 = yi ,t−1 − yi ,t−2, and ∆εit = εit − εi ,t−1.
In compact notation, the first-differenced model is

∆yi︸︷︷︸
∆yi3
∆yi4

...
∆yiT



= λ ∆yi ,−1︸ ︷︷ ︸
∆yi2
∆yi3

...
∆yi ,T−1



+ ∆εi︸︷︷︸
∆εi3
∆εi4

...
∆εiT


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Least-Squares Estimation

It turns out that
Mι = D′(DD′)−1D

for the first-difference transformation matrix

D = (0, IT−2) − (IT−2, 0) =


−1 1 0 · · · 0
0 −1 1

...
... . . . . . . 0
0 · · · 0 −1 1


such that, Dyi = ∆yi .
As highlighted by Bun and Kiviet (2006), it holds more generally that

Mι = K′(KK′)−1K

for any (T − 2) × (T − 1) transformation matrix K with rk(K) = T − 2 and
KιT−1 = 0.
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Least-Squares Estimation

Consequently, the FE estimator can be written as

λ̂FE =
( N∑

i=1
y′

i ,−1D′(DD′)−1Dyi ,−1

)−1 N∑
i=1

y′
i ,−1D′(DD′)−1Dyi

When εit is homoskedastic and serially uncorrelated, this is a generalized least
squares (GLS) estimator because Var(∆εi) = σ2

εDD′, which reflects the fact that
∆εit has first-order serial correlation:

Cov(∆εit ,∆εis) =


2σ2

ε , s = t
−σ2

ϵ , |t − s| = 1
0 , |t − s| ≥ 2
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Maximum Likelihood Estimation

Minimizing the sum of squared residuals is equivalent to maximizing the
log-likelihood function:

λ̂FE = arg max
λ̂

ln L(λ̂, σ̂2
ε(λ̂))

where

ln L(λ̂, σ̂2
ε(λ̂)) = −N(T − 1)

2 ln(2πσ̂2
ε(λ̂)) − 1

2σ̂2
ε(λ̂)

N∑
i=1

T∑
t=2

(∆̄yit − λ̂∆̄yi ,t−1)2

after concentrating out the variance parameter by using its closed-form solution:

σ̂2
ε(λ̂) = 1

N(T − 2)

N∑
i=1

T∑
t=2

(∆̄yit − λ̂∆̄yi ,t−1)2
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Maximum Likelihood Estimation

The first-order condition is the same as before:

1
N

N∑
i=1

mFE ,i(λ̂FE ) = 0

The likelihood function is derived from the joint multivariate normal distribution
of ∆̄εi2, ∆̄εi3, . . . , ∆̄εiT , conditional on the transformed initial observations ∆̄yi1.

In general, numerical methods are used to maximize the log-likelihood function –
e.g., the Newton-Raphson algorithm.
If the errors are not normally distributed, the same likelihood function can be used
but the estimator is called a quasi-ML estimator.
The inconsistency of the FE estimator results from the fact that ∆̄yi1 is not
exogenous with respect to the joint distribution of the idiosyncratic errors.
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Method of Moments Estimation

Using the first-order condition as the starting point, the FE estimator can
equivalently be characterized as a method of moments (MM) estimator, solving

λ̂FE = arg min
λ̂

(
1
N

N∑
i=1

mFE ,i(λ̂)
)2

This quadratic objective function attains its minimum again at
1
N
∑N

i=1 mFE ,i(λ̂FE ) = 0.
The FE estimator is biased/inconsistent because E [mFE ,i(λ)] ̸= 0, due to

E [∆̄yi,t−1∆̄εit ] = E
[(

yi,t−1 − 1
T − 1

T∑
s=2

yi,s−1

)(
εit − 1

T − 1

T∑
s=2

εis

)]
̸= 0
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Instrumental-Variables Estimation

A special case of an MM estimator is the simple IV estimator with instrument zit .
A valid instrument must satisfy the moment condition E

[
1

T−1
∑T

t=2 zit∆̄εit

]
= 0 (or

a similar moment condition for a different transformation or no transformation of the
error term αi + εit).
The FE estimator can be characterized as an IV estimator with invalid instrument
zit = ∆̄yi,t−1 – i.e., the transformed lagged dependent variable is instrumented by
itself – such that

mFE ,i(λ) = 1
T − 1

T∑
t=2

zit∆̄εit
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Equivalence of Estimation Methods
FE objective functions for the pooled OLS, MM, and ML methods:

yit = λyi,t−1 + αi + εit , where λ = 0.2
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Method of Moments Estimation

More generally, a consistent MM estimator solves

θ̂MM = arg min
θ̂

m(θ̂)′ m(θ̂)

given a K × 1 vector of parameters θ and an L × 1 vector of moment functions

m(θ̂) = 1
N

N∑
i=1

mi(θ̂)

satisfying the moment conditions E [mi(θ)] = 0.
If the moment functions m(θ̂) are nonlinear in the parameters, a closed-form
solution does not exist, and numerical optimization methods are needed – e.g., the
Gauss-Newton algorithm.
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Generalized Method of Moments Estimation

If there are more (nonredundant) moment equations than parameters – i.e.,
L > K – the estimator is overidentified.
A GMM estimator introduces a weighting matrix W(θ̂1), possibly depending on a
preliminary estimator θ̂1:

θ̂GMM = θ̂GMM(W(θ̂1)) = arg min
θ̂

m(θ̂)′ W(θ̂1) m(θ̂)

When L > K , some or all of the moment functions evaluated at the minimizer θ̂GMM
will be nonzero. The Hansen (1982) test of the overidentifying restrictions can be
used as a model misspecification test, assuming that θ̂GMM is an efficient estimator:

J = N m(θ̂GMM)′ W(θ̂1) m(θ̂GMM) d→ χ2(L − K )

In the just-identified case – i.e., L = K – the weighting matrix is irrelevant,
θ̂GMM(W(θ̂1)) = θ̂MM , and J = 0.
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Generalized Method of Moments Estimation

While the GMM estimator is consistent for any weighting matrix if the moment
conditions E [mi(θ)] = 0 are satisfied, a two-step procedure is needed for
efficiency.

1 Estimate θ with any consistent estimator θ̂1, which is typically a one-step GMM
estimator θ̂1 = θ̂GMM(W) with fixed initial weighting matrix W, which might
depend on the data but not on unknown parameters.

2 The efficient two-step estimator β̂GMM(W(θ̂1)) uses an estimate of the moment
functions’ inverse variance-covariance matrix from the one-step estimator:

W(θ̂1) =
(

1
N

N∑
i=1

mi(θ̂1) mi(θ̂1)′

)−1

This is the optimal weighting matrix in the sense that it minimizes the asymptotic
variance of the estimator.
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Generalized Method of Moments Estimation

While the choice of the initial estimator (or initial weighting matrix) is irrelevant
asymptotically, it affects the finite-sample results. To remove the dependence on
this initial choice, one can repeatedly update the weighting matrix and estimator:

θ̂j = θ̂GMM(W(θ̂j−1)) = arg min
θ̂

m(θ̂)′ W(θ̂j−1) m(θ̂)

The iterated GMM estimator (Hansen, Heaton, and Yaron, 1996) is obtained
upon convergence as the fixed point of this updating rule:

θ̂iGMM = θ̂GMM(W(θ̂iGMM)) = arg min
θ̂

m(θ̂)′ W(θ̂iGMM) m(θ̂)
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Generalized Method of Moments Estimation

Another alternative is the continuously-updating GMM estimator (Hansen,
Heaton, and Yaron, 1996), which evaluates the optimal weighting matrix jointly
with the moment functions:

θ̂cuGMM = arg min
θ̂

m(θ̂)′ W(θ̂) m(θ̂)

where

W(θ̂) =
(

1
N

N∑
i=1

mi(θ̂) mi(θ̂)′
)−1

This estimator is generally computationally more demanding because its first-order
condition is nonlinear in the parameters θ̂ even if the moment functions m(θ̂) are
linear in the parameters. Consequently, there is no closed-form solution and
numerical methods need to be employed.
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Dynamic Panel Bias

Assuming E [yi1εit ] = 0 for all t ≥ 2, Nickell (1981) obtained an expression for the
downward bias – more precisely, the inconsistency – of the FE estimator:

plim
N→∞

(λ̂FE − λ) = −
1+λ
T−2

(
1 − 1−λT−1

(1−λ)(T−1)

)
1 − 2λ

(1−λ)(T−2)

(
1 − 1−λT−1

(1−λ)(T−1)

)
A simple approximation is

plim
N→∞

(λ̂FE − λ) ≈ − 1 + λ

T − 1

Note that plimN→∞(λ̂FE − λ) → 0 as T → ∞ (or as λ → −1).
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Dynamic Panel Bias

Inconsistency/bias of the dynamic FE estimator:
yit = λyi,t−1 + αi + εit , where λ = 0.2 (low persistence)
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Dynamic Panel Bias

Inconsistency/bias of the dynamic FE estimator:
yit = λyi,t−1 + αi + εit , where λ = 0.8 (high persistence)
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Dynamic Panel Bias

Inconsistency/bias of the dynamic FE estimator:
yit = λyi,t−1 + αi + εit , where λ = 0 (no persistence)
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Additive Bias Correction

Based on the closed-form expression

bT (λ) = plim
N→∞

(λ̂FE − λ)

(or another suitable bias approximation), an additive bias correction can be
applied to the FE estimator:

λ̂aBCFE = λ̂FE − bT (λ̂0)

with a bias estimate obtained from an initial consistent estimator λ̂0.
Kiviet (1995) operationalized this idea based on a refined bias approximation, also
allowing for additional strictly exogenous regressors xit .
A downside of this approach is its reliance on an initial consistent estimator, and the
necessity to obtain standard errors with bootstrap methods.
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Iterative Bias Correction

To avoid reliance on an initial consistent estimator, we can consider the iterations

λ̂j = λ̂FE − bT (λ̂j−1)

starting with an initial guess λ̂0 ∈ (−1, 1), which could be λ̂FE or any other
reasonable value.
The iterative bias-corrected estimator is the fixed point of this updating rule
obtained upon convergence:

λ̂iBCFE = λ̂FE − bT (λ̂iBCFE )

The estimator proposed by Bun and Carree (2005) is based on this idea, again
extended to accommodate strictly exogenous regressors xit .
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Iterative Bias Correction
Numerical illustration (proof of concept) for the iterative bias correction, where
λ̂FE is replaced by its probability limit instead of using actual data.

yit = λyi,t−1 + αi + εit , where λ = 0.2; T = 5
λ̂j = (plimN→∞ λ̂FE ) − bT (λ̂j−1)
Convergence criterion: |λ̂j − λ̂j−1| < 10−7
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Bias-Corrected Method of Moments Estimation

Recall that the bias of the FE estimator arises because
E [mFE ,i(λ)] = dT (λ, σ2

ε) ̸= 0, where

dT (λ, σ2
ε) = − σ2

ε

(1 − λ)(T − 1)

(
1 − 1 − λT−1

(1 − λ)(T − 1)

)

An alternative approach is to directly correct the moment functions:

mBCFE ,i(λ, σ2
ε) = mFE ,i(λ) − dT (λ, σ2

ε)

such that E [mBCFE ,i(λ)] = 0
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Bias-Corrected Method of Moments Estimation

The bias-corrected MM estimator of Breitung, Kripfganz, and Hayakawa (2022)
then solves

λ̂BCFE = arg min
λ̂

(
1
N

N∑
i=1

mBCFE ,i(λ̂, σ̂2
ε(λ̂))

)2

The estimator is equivalent to the iterative bias-corrected estimator of Bun and
Carree (2005) and the adjusted profile likelihood estimator of Dhaene and Jochmans
(2016).
The bias formula can be adjusted for higher-order autoregressive models:

yit =
p∑

j=1
λjyi,t−j + αi + εit
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Bias-Corrected Method of Moments Estimation

Extending the bias-corrected MM approach to models with strictly exogenous
regressors xit is straightforward by simply adding the relevant moment functions:

mBCFE ,i(θ, σ2
ε) = mFE ,i(θ) −

(
dT (λ, σ2

ε)
0

)

where θ = (λ,β′)′ and

mFE ,i(θ) = 1
T − 1

T∑
t=2

(
∆̄yi ,t−1

∆̄xit

)
(∆̄yit − λ∆̄yi ,t−1 − ∆̄x′

itβ)︸ ︷︷ ︸
∆̄εit

Standard errors are easy to compute using well established asymptotic results for
method of moments estimators.
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Bias-Corrected Method of Moments Estimation

Moreover, a RE version is readily constructed assuming that the regressors xit are
uncorrelated with the unit-specific error component αi :

mBCRE ,i(θ, σ2
ε) = mRE ,i(θ) −

dT (λ, σ2
ε)

0
0


where

mRE ,i(θ) = 1
T − 1

T∑
t=2

∆̄yi ,t−1
∆̄xit
xit

(yit − λyi ,t−1 − x′
itβ
)︸ ︷︷ ︸

αi +εit
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Bias-Corrected Method of Moments Estimation

The bias-corrected RE estimator is overidentified. There are 1 + 2Kx moment
equations for 1 + Kx parameters. The estimator solves

θ̂BCRE (W(θ̂1)) = arg min
θ̂

mBCRE (θ̂)′ W(θ̂1) mBCRE (θ̂)

Two-step, iterated, or continuously-updating GMM can be used for efficient
estimation.
The initial consistent (but inefficient) estimator θ̂1 is usually the one-step GMM
estimator with initial weighting matrix W =

(
1

N(T−1)
∑N

i=1
∑T

t=2 zitz′
it

)−1
, where

zit =

∆̄yi,t−1
∆̄xit
xit


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Bias-Corrected Method of Moments Estimation

The Kx overidentifying restrictions imposed by the additional RE moment
conditions E [xit(αi + εit)] = 0 can be evaluated with the Hansen (1982) test:

J = N mBCRE (θ̂BCRE )′ W(θ̂1) mBCRE (θ̂BCRE ) d→ χ2(Kx )

θ̂BCRE is efficient if the RE assumption holds, but otherwise inconsistent. θ̂BCFE
is consistent in both cases. This motivates a test for a statistically significant
difference between both estimators following the Hausman (1978) principle:

H = (θ̂BCFE − θ̂BCRE )′(Var(θ̂BCFE − θ̂BCRE ))−1(θ̂BCFE − θ̂BCRE ) d→ χ2(Kx )

Both tests are asymptotically equivalent.
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Quasi-Maximum Likelihood Estimation

Recall that the FE estimator could be equivalently obtained from the model in
deviations from within-group means or the model in first differences.
Based on the latter, to account for the correlation of the initial observations ∆yi2
with ∆εi3, an auxiliary equation can be added to the model:

∆yi2 = ψ + νi2

with Var(νi2) = ωσ2
ε and

Cov(νi2,∆εit) =
{

−σ2
ε , t = 3

0 , t > 3
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Quasi-Maximum Likelihood Estimation

An unconditional log-likelihood function L(λ̂, σ̂2
ε , ψ̂, ω̂) can be constructed based

on the joint multivariate (normal) distribution of νi2,∆εi3, . . . ,∆εiT , where ψ and
ω are auxiliary parameters to be estimated.

This results in the unconditional FE-QML estimator suggested by Hsiao, Pesaran,
and Tahmiscioglu (2002), who also extend it to the model with additional strictly
exogenous regressors xit .
The restriction ψ̂ = 0 could be employed when it is assumed that the initial
observations are draws from the stationary distribution.
Following a similar idea, an unconditional RE-QML estimator was proposed by
Bhargava and Sargan (1983).
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Quasi-Maximum Likelihood Estimation

Breitung, Kripfganz, and Hayakawa (2022) demonstrate that the unconditional
log-likelihood function can be nicely written in terms of deviations from
within-group means:

ln L(λ̂, σ2
ε , ψ̂, ω̂)) = −N(T − 1)

2 ln(2πσ̂2
ε) − 1

2σ̂2
ε

N∑
i=1

T∑
t=2

(∆̄yit − λ̂∆̄yi ,t−1)2

−N
2 ln(1+(T−1)(ω̂−1))− T − 1

2σ̂2
ε(1 + (T − 1)(ω̂ − 1))

N∑
i=1

((1−λ̂)yi1+ψ̂−(ȳi−λ̂ȳi ,−1))2

The first two terms equal the conditional log-likelihood function. Adding the last two
terms effectively serves as a bias correction.
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Bias-Corrected Estimation Methods

Objective functions of the bias-corrected MM estimator and the QML estimator:
yit = λyi,t−1 + αi + εit ; T = 5
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Instrumental-Variables Estimation

The FD estimator is biased/inconsistent because ∆yi ,t−1 is correlated with ∆εit
in the first-differenced regression model

∆yit = λ∆yi ,t−1 + ∆εit

If the (untransformed) idiosyncratic error term εit is serially uncorrelated, then
Cov(∆yi ,t−s ,∆εit) = Cov(yi ,t−s ,∆εit) = 0 for s ≥ 2.

To be precise, Cov(∆yi,t−s ,∆εit) = 0 relies on the initial-observations assumption

E
[(

yi1 − α

1 − λ

)
∆εit

]
= 0

for t ≥ 3, while Cov(yi,t−s ,∆εit) = 0 requires the joint assumption that E [yi1εit ] = 0
and E [αiεit ] = 0 for t ≥ 2. The latter implies the former but not vice versa.
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Instrumental-Variables Estimation

Anderson and Hsiao (1981) thus suggest to construct a simple (just-identified) IV
estimator for the first-differenced model with either instrument zit = ∆yi ,t−2 or
zit = yi ,t−2.

Using zit = ∆yi,t−2 loses a further observation per unit and requires T ≥ 4, while
zit = yi,t−2 still only requires T ≥ 3.

The strength of the instruments varies with the persistence of the process:

Cov(zit ,∆yi ,t−1) =
{

−1−λ
1+λσ

2
ε , zit = ∆yi ,t−2

− 1
1+λσ

2
ε , zit = yi ,t−2

assuming that the process is dynamically stable and reached stationarity.
The strength of either instrument diminishes as λ → 1, but more severely for
zit = ∆yi,t−2.
The observation that Cov(yi,t−2,∆yi,t−1) → − 1

2σ
2
ϵ as λ → 1 suggests that

zit = yi,t−2 retains its strength. However, this is misleading.
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Instrumental-Variables Estimation

With

Var(zit) =


2

1+λσ
2
ε , zit = ∆yi ,t−2

1
(1−λ)2σ

2
α + 1

1−λ2σ
2
ε , zit = yi ,t−2

we find for the first-stage regression

∆yi ,t−1 = πzit + νit

that

π = Cov(zit ,∆yi ,t−1)
Var(zit)

=


−1−λ

2 , zit = ∆yi ,t−2

−(1 − λ)
1−λ
1+λ

σ2
ε

σ2
α+ 1−λ

1+λ
σ2

ε
, zit = yi ,t−2

such that π → 0 as λ → 1 for either instrument.
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Instrumental-Variables Estimation

Instead of choosing between the two instruments, they can also be combined with
a two-stage least squares (2SLS) estimator – i.e., zit = (∆yi ,t−2, yi ,t−2)

Because ∆yi,t−2 = yi,t−2 − yi,t−3, an equivalent set of instruments is
zit = (yi,t−2, yi,t−3)
However, this does not solve the problem of instrument weakness when λ → 1.
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Instrumental-Variables Estimation

Instrument strength and distribution of λ̂− λ for the simple IV and the 2SLS
estimator based on 1,001 replications:

yit = λyi,t−1 + αi + εit , where εit ∼ N (0, 1), αi ∈ {−1, 0, 1}, and
λ ∈ {0, 0.05, 0.1, . . . , 0.9, 0.95}; N = 600, T = 5
Stationary initial observations: yi1 = αi

1−λ + νi1, where νi1 ∼ N
(

0, 1
1−λ2

)
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(b) zit = yi,t−2
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Instrumental-Variables Estimation

In the previous data-generating process (DGP), E [yit |αi ] → ∞ and Var(yit) → ∞
as λ → 1. A potential remedy for this dependence on λ is to assume a restricted
DGP:

yit = λyi ,t−1 + (1 − λ)α̃i︸ ︷︷ ︸
αi

+
√

1 − λ2ε̃it︸ ︷︷ ︸
εit

such that E [yit |αi ] = α̃i and Var(yit) = σ2
α̃ + σ2

ε̃

Other properties of the model still depend on λ, such as Var(∆yit) = 2(1 − λ)σ2
ε̃ and

Cov(zit ,∆yi,t−1) =
{

−(1 − λ)2σ2
ε̃ , zit = ∆yi,t−2

−(1 − λ)σ2
ε̃ , zit = yi,t−2

π = Cov(zit ,∆yi,t−1)
Var(zit)

=
{

− 1−λ
2 , zit = ∆yi,t−2

−(1 − λ) σ2
ε̃

σ2
α̃+σ2

ε̃

, zit = yi,t−2
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Instrumental-Variables Estimation

Instrument strength and distribution of λ̂− λ for the simple IV and the 2SLS
estimator based on 1,001 replications:

yit = λyi,t−1 + αi + εit , where εit ∼ N (0, 1 − λ2), αi ∈ {−(1 − λ), 0, 1 − λ}, and
λ ∈ {0, 0.05, 0.1, . . . , 0.9, 0.95}; N = 600, T = 5
Stationary initial observations: yi1 = αi

1−λ + νi1, where νi1 ∼ N (0, 1)
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(b) zit = yi,t−2
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(c) zit = (∆yi,t−2, yi,t−2)
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Instrumental-Variables Estimation

Other properties of the DGP affect the performance of the estimators as well:
As highlighted by Blundell and Bond (1998), a higher variance ratio σ2

α

σ2
ε

further
reduces the strength of the instrument zit = yi,t−2.
Nonstationary initial observations might have non-trivial effects on the estimators.
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Instrumental-Variables Estimation

Instrument strength and distribution of λ̂− λ for the simple IV and the 2SLS
estimator based on 1,001 replications:

yit = λyi,t−1 + αi + εit , where εit ∼ N (0, 1 − λ2), αi ∈ {−2(1 − λ), 0, 2(1 − λ)},
and λ ∈ {0, 0.05, 0.1, . . . , 0.9, 0.95}; N = 600, T = 5
Stationary initial observations: yi1 = αi

1−λ + νi1, where νi1 ∼ N (0, 1)
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(b) zit = yi,t−2
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(c) zit = (∆yi,t−2, yi,t−2)
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Instrumental-Variables Estimation

Instrument strength and distribution of λ̂− λ for the simple IV and the 2SLS
estimator based on 1,001 replications:

yit = λyi,t−1 + αi + εit , where εit ∼ N (0, 1 − λ2), αi ∈ {−(1 − λ), 0, 1 − λ}, and
λ ∈ {0, 0.05, 0.1, . . . , 0.9, 0.95}; N = 600, T = 5
Initial observations: yi1 = E [yit |αi ] = αi

1−λ (mean stationary but not covariance
stationary)
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Serial-Correlation Tests

A crucial assumption for all estimators considered so far is that the idiosyncratic
error component εit is serially uncorrelated. Testing the validity of this assumption
is essential.
Arellano and Bond (1991) suggest a test of the null hypothesis
H0 : Cov(∆εit ,∆εi ,t−s) = 0 for some s ≥ 1.

If εit is indeed serially uncorrelated, we expect to reject the null hypothesis for order
s = 1 but not to reject it for any higher order s ≥ 2.
In the empirical practice, the test for no serial correlation of the first-differenced
errors at order s = 2 is routinely applied.

As an extension, Yamagata (2008) considers the null hypothesis
H0 : Cov(∆εit ,∆εi ,t−s) = 0 for all 2 ≤ s ≤ q. This is a joint test of no serial
correlation from order 2 up to some order q.
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Serial-Correlation Tests

Both tests are special cases of the portmanteau test proposed by Jochmans
(2020), which allows for nonstationary alternatives, where Cov(∆εit ,∆εi ,t−s)
might be a function of t.

The portmanteau test can be more powerful if T is (very) small, but quickly loses
power when T becomes moderately large.

All of these tests are applicable after BC-MM, QML, and IV estimation.
Evidence of serial correlation in εit might be an indication of omitted variables.
Estimating a higher-order autoregressive model could be a remedy.
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Serial-Correlation Tests

If the model is overidentified and the overidentifying restriction is implied by the
absence of serial correlation, a conventional overidentification test can be used to
assess this assumption.

For the IV estimator, both zit = ∆yi,t−2 and zit = yi,t−2 become invalid instruments
when there is second-order serial correlation in ∆εit (which would be implied by
first-order serial correlation in εit).
However, the linear combination yi,t−2 − ∆yi,t−2 = yi,t−3 remains a valid instrument
(as long as there is no higher-order serial correlation). Since the 2SLS estimator with
both instruments zit = (∆yi,t−2, yi,t−2) is equivalent to the 2SLS estimator with
instruments zit = (yi,t−2, yi,t−3), testing the resulting overidentifying restriction is
informative about the absence of serial correlation.
Effectively, such a test contrasts the overidentified 2SLS estimator with a
just-identified estimator using only the instrument zit = yi,t−3, which is valid both
under the null and the alternative hypothesis.
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Interim Conclusion

In the simple panel AR(1) model (or its extension with strictly exogenous
regressors), the bias/inconsistency of the FE estimator can be addressed
effectively by bias correcting the estimator, or by adjusting the objective function
of an MM or QML estimator.
A simple IV or 2SLS estimator is less effective and might suffer from weak
instruments, especially when the process is very persistent. However, this
approach might be beneficial when other predetermined or endogenous regressors
are added to the model.
All estimators seen so far crucially depend on the assumption of serially
uncorrelated idiosyncratic errors. The BC and QML estimators also typically
require (time-series) homoskedasticity.

A more flexible approach is often desirable.
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