Heterogeneity 00000000000 Dynamic Models

Advanced Dynamic Panel Data Methods

Perils of Unobserved Heterogeneity; Scope and Limitations of Panel Data Analysis

Sebastian Kripfganz

> Universidad de Salamanca July 17–19, 2023

Sebastian Kripfganz (2023)

• Linear-in-coefficients model for the conditional mean:

$$\mathsf{E}[y_{it}|\mathbf{X}_i] = \mathbf{x}'_{it}eta$$

- The outcome variable is y_{it} .
- The K regressors x_{itk} are collected in the $K_x \times 1$ vector $\mathbf{x}_{it} = (x_{it1}, x_{it2}, \dots, x_{itK})'$.
- X_i = (x_{i1}, x_{i2},..., x_{iT})' collects all observations for unit i in a T × K matrix. We assume rk(E[X'_iX_i]) = K_x (no perfect multicollinearity).
- $\beta = (\beta_1, \beta_2, \dots, \beta_K)'$ is a $K \times 1$ vector of (homogeneous) slope coefficients.
- An intercept can (and generally should) be included in the model by setting $x_{it1} = 1$ for all *i*, *t*.

Dynamic Models

Linear Panel Data Model

Object of interest:

$$\frac{\partial E[y_{it}|\mathbf{X}_i]}{\partial \mathbf{x}_{it}} = \boldsymbol{\beta}$$

(or a single coefficient β_k , or a linear combination of coefficients).

• Linear (in coefficients) regression model:

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + \varepsilon_{it}$$

• ε_{it} is an error term that satisfies $E[\varepsilon_{it}|\mathbf{X}_i] = 0$.

• If $E[\varepsilon_{it}|\mathbf{X}_i] = 0$ holds – i.e., the model is correctly specified – the pooled ordinary least squares (OLS) estimator $\hat{\beta}_{POLS}$ is unbiased and consistent.

Linear Panel Data Model	Heterogeneity	Dynamic Models	Conclusion
oo	●○○○○○○○○○	00000000	O

Heteroskedasticity

• (Conditional) homoskedasticity:

$$\mathsf{Var}(y_{it}|\mathbf{X}_i) = \mathsf{Var}(arepsilon_{it}|\mathbf{X}_i) = \sigma_arepsilon^2$$

• (Conditional) heteroskedasticity:

$$Var(y_{it}|\mathbf{X}_i) = Var(\varepsilon_{it}|\mathbf{X}_i) = \sigma_{\varepsilon,it}^2$$

- Time-series heteroskedasticity: $\sigma^2_{\varepsilon,it} = \sigma^2_{\varepsilon,t}$
- Cross-sectional heteroskedasticity: $\sigma_{\varepsilon,it}^2 = \sigma_{\varepsilon,i}^2$
- Under homoskedasticity (and correct model specification), $\hat{\beta}_{POLS}$ is efficient. Under heteroskedasticity, it is no longer efficient (but remains unbiased/consistent). We usually do not explicitly model the conditional heteroskedasticity, but just compute "robust" standard errors.

Sebastian Kripfganz (2023)

Dynamic Models

Coefficient Heterogeneity

• Unit-specific intercepts:

$$E[y_{it}|\mathbf{X}_i;\alpha_i] = \mathbf{x}'_{it}\boldsymbol{\beta} + \alpha_i$$

- We will pay special attention to this case.
- Time-specific intercepts:

$$E[y_{it}|\mathbf{X}_i;\delta_t] = \mathbf{x}'_{it}\boldsymbol{\beta} + \delta_t$$

- We usually deal with such "time-fixed effects" by including T 1 dummy variables $d_s = \mathcal{I}(s = t), s = 2, 3, ..., T$, as part of the regressors \mathbf{x}_{it} .
- Beware the "dummy trap"; we cannot include a whole set of *T* time dummies if a common intercept x_{it1} = 1 is included because of perfect multicollinearity (∑_{s=1}^T d_s = 1).

Coefficient Heterogeneity

• Unit-specific slope coefficients:

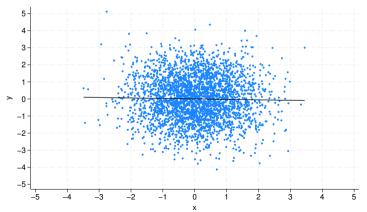
$$\mathsf{E}[y_{it}|\mathbf{X}_i;\boldsymbol{\beta}_i] = \mathbf{x}'_{it}\boldsymbol{\beta}_i$$

- In the simplest form, such heterogeneity can be modeled with interaction terms if $\beta_i = f(\mathbf{x}_{it})$, which includes polynomials in \mathbf{x}_{it} . The resulting model can be written as a special case of the model with homogeneous slopes.
- More generally, models with heterogeneous slopes fall into the class of "mixed-effects" models. We do not explicitly cover them here.
- Time-specific slope coefficients:

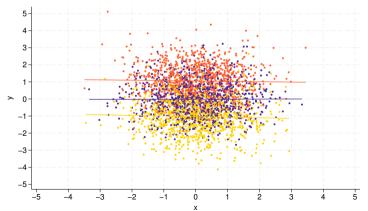
$$\mathsf{E}[y_{it}|\mathbf{X}_i;\boldsymbol{\beta}_t] = \mathbf{x}_{it}'\boldsymbol{\beta}_t$$

• Interaction terms between \mathbf{x}_{it} and time dummies d_s are the easiest way to account for this type of heterogeneity.

- Simulated data, where $E[y_{it}|x_{it}] = E[y_{it}] = 0$ (i.e., $\beta = 0$):
 - $y_{it} = \alpha_i + \varepsilon_{it}$, where $\varepsilon_{it} \sim \mathcal{N}(0, 1)$ and $\alpha_i \in \{-1, 0, 1\}$
 - $x_{it} = \kappa \alpha_i + \nu_{it}$, where $\nu_{it} \sim \mathcal{N}(0, 1)$ and $\kappa = 0$

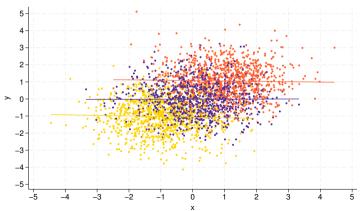


- Simulated data, where $E[y_{it}|x_{it}] = E[y_{it}] = 0$ (i.e., $\beta = 0$):
 - $y_{it} = \alpha_i + \varepsilon_{it}$, where $\varepsilon_{it} \sim \mathcal{N}(0, 1)$ and $\alpha_i \in \{-1, 0, 1\}$
 - $x_{it} = \kappa \alpha_i + \nu_{it}$, where $\nu_{it} \sim \mathcal{N}(0, 1)$ and $\kappa = 0$

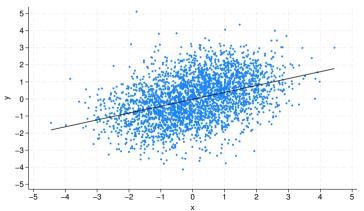


Dynamic Models

- Simulated data, where $E[y_{it}|x_{it}] = E[y_{it}] = 0$ (i.e., $\beta = 0$):
 - $y_{it} = \alpha_i + \varepsilon_{it}$, where $\varepsilon_{it} \sim \mathcal{N}(0, 1)$ and $\alpha_i \in \{-1, 0, 1\}$
 - $x_{it} = \kappa \alpha_i + \nu_{it}$, where $\nu_{it} \sim \mathcal{N}(0, 1)$ and $\kappa = 1$



- Simulated data, where $E[y_{it}|x_{it}] = E[y_{it}] = 0$ (i.e., $\beta = 0$):
 - $y_{it} = \alpha_i + \varepsilon_{it}$, where $\varepsilon_{it} \sim \mathcal{N}(0, 1)$ and $\alpha_i \in \{-1, 0, 1\}$
 - $x_{it} = \kappa \alpha_i + \nu_{it}$, where $\nu_{it} \sim \mathcal{N}(0, 1)$ and $\kappa = 1$



Heterogeneity (Unit-Specific Intercept)

• If the regressors \mathbf{x}_{it} are uncorrelated with the unit-specific intercept α_i , $\hat{\boldsymbol{\beta}}_{POLS}$ is still unbiased/consistent for

$$\frac{\partial E[y_{it}|\mathbf{X}_i]}{\partial \mathbf{x}_{it}} = \frac{\partial E[y_{it}|\mathbf{X}_i;\alpha_i]}{\partial \mathbf{x}_{it}} = \beta$$

but no longer efficient.

• The "random-effects" (RE) estimator $\hat{\beta}_{RE}$ is efficient (under homoskedasticity) as it accounts for the serial correlation in the error term, which is due to the time-invariant nature of the unit-specific error component α_i :

$$Cov(\alpha_i + \varepsilon_{it}, \alpha_i + \varepsilon_{is}) = Var(\alpha_i)$$

for $s \neq t$, under the usual assumption that the idiosyncratic error component ε_{it} is serially uncorrelated – i.e, $Cov(\varepsilon_{it}, \varepsilon_{is}) = 0$ for $s \neq t$.

Heterogeneity (Unit-Specific Intercept)

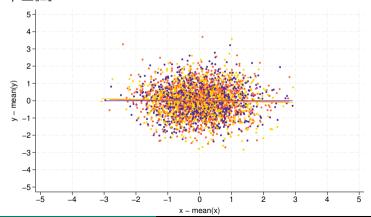
- If the regressors x_{it} are correlated with the unit-specific intercept α_i, failure to account for the latter leads to biased/inconsistent estimation of the coefficients β.
 - In the linear regression model

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + \alpha_i + \varepsilon_{it}$$

with combined error term $\alpha_i + \varepsilon_{it}$, the unit-specific error component α_i acts as omitted variable because $E[\alpha_i + \varepsilon_{it} | \mathbf{X}_i] = E[\alpha_i | \mathbf{X}_i] \neq 0$, and

$$\frac{\partial E[y_{it}|\mathbf{X}_i]}{\partial \mathbf{x}_{it}} = \underbrace{\frac{\partial E[y_{it}|\mathbf{X}_i;\alpha_i]}{\partial \mathbf{x}_{it}}}_{=\beta} + \underbrace{\frac{\partial E[\alpha_i|\mathbf{X}_i]}{\partial \mathbf{x}_{it}}}_{\neq \mathbf{0}}$$

- Re-centering of y_{it} and x_{it} :
 - Deviations from unit-specific means, $y_{it} \bar{y}_i$ and $x_{it} \bar{x}_i$, where $\bar{y}_i = \frac{1}{T} \sum_{s=1}^{T} y_{is}$ and $\bar{x}_i = \frac{1}{T} \sum_{s=1}^{T} x_{is}$



Heterogeneity (Unit-Specific Intercept)

 \bullet The "fixed-effects" (FE) estimator $\hat{\beta}_{\textit{FE}}$ is based on the de-meaned regression

$$y_{it} - \bar{y}_i = (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)' \boldsymbol{\beta} + \varepsilon_{it} - \bar{\varepsilon}_i$$

where the unit-specific error component α_i is dropped due to its time invariance, and thus no longer causes an omitted-variables bias.

- This requires strict exogeneity of the regressors x_{it} i.e., E[ε_{it}|X_i] = E[ε_{it}|x_{i1}, x_{i2},..., x_{iT}] = 0 (as opposed to E[ε_{it}|x_{it}] = 0 under contemporaneous exogeneity).
- Alternatively, the first-difference (FD) estimator $\hat{\beta}_{FD}$ achieves the same goal by using the transformed regression

$$y_{it} - y_{i,t-1} = (\mathbf{x}_{it} - \mathbf{x}_{i,t-1})' \boldsymbol{\beta} + \varepsilon_{it} - \varepsilon_{i,t-1}$$

Dynamic Models ●00000000

Dynamic Models (Lagged Dependent Variable)

• Linear model with state dependence (lagged dependent variable):

$$E[y_{it}|y_{i,t-1}, \mathbf{X}_i; \alpha_i] = \lambda y_{i,t-1} + \mathbf{x}'_{it}\beta + \alpha_i$$

with regression analogue

$$y_{it} = \lambda y_{i,t-1} + \mathbf{x}'_{it}\boldsymbol{\beta} + \alpha_i + \varepsilon_{it}$$

- Notice that the model is only well defined for t = 2, 3, ..., T because y_{i0} is unobserved. This reduces the effective number of observations by 1 for every unit.
- A lagged dependent variable can be motivated by habit formation and other reasons for partial-adjustment processes.

• Reparameterization of the regression model in error correction form:

$$y_{it} - y_{i,t-1} = \underbrace{(\lambda - 1)}_{\substack{\text{(negative)}\\\text{speed of}\\\text{adjustment}}} \underbrace{\left(y_{i,t-1} - \mathbf{x}'_{i,t-1}\frac{\beta}{1-\lambda} - \frac{\alpha_i}{1-\lambda}\right)}_{\substack{\text{deviation from long-run equilibrium}\\E[y_{it}|\mathbf{X}_i;\alpha_i] = \mathbf{x}'_{it}\frac{\beta}{1-\lambda} + \frac{\alpha_i}{1-\lambda}}}_{\substack{\mathbf{x}_{it} - \mathbf{x}_{i,t-1}}} + \mathbf{x}_{i,t-1}'\beta + \varepsilon_{it}}$$

• Objects of interest:

Linear Panel Data Model

• Short-run effects:

$$\frac{\partial E[y_{it}|y_{i,t-1},\mathbf{X}_i;\alpha_i]}{\partial \mathbf{x}_{it}} = \boldsymbol{\beta}$$

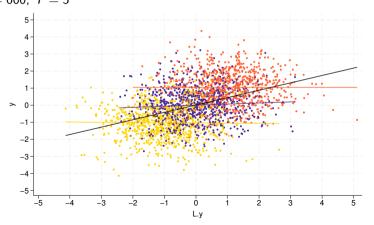
• Long-run effects:

$$\frac{\partial E[y_{it}|\mathbf{X}_i;\alpha_i]}{\partial \mathbf{x}_{it}} = \frac{\beta}{1-\lambda}$$

Dynamic Models

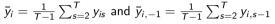
Dynamic Models (Lagged Dependent Variable)

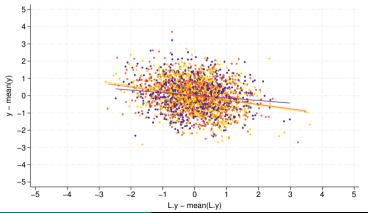
- Simulated data, where $E[y_{it}|y_{i,t-1}] = E[y_{it}] = 0$ (i.e., $\lambda = 0$):
 - $y_{it} = \alpha_i + \varepsilon_{it}$, where $\varepsilon_{it} \sim \mathcal{N}(0, 1)$ and $\alpha_i \in \{-1, 0, 1\}$ • N = 600, T = 5



Dynamic Models (Lagged Dependent Variable)

- Re-centering of y_{it} and $y_{i,t-1}$:
 - Deviations from unit-specific means, $y_{it} \bar{y}_i$ and $y_{i,t-1} \bar{y}_{i,-1}$, where





Dynamic Models 0000●0000

Dynamic Models (Lagged Dependent Variable)

 The lagged dependent variable y_{i,t-1} is correlated with the unit-specific error component α_i by construction of the model:

$$y_{it} = \lambda y_{i,t-1} + \mathbf{x}'_{it}\boldsymbol{\beta} + \alpha_i + \varepsilon_{it}$$

• $y_{i,t-1}$ is not strictly exogenous, but only sequentially exogenous/weakly exogenous/predetermined – i.e., $E[\varepsilon_{it}|y_{i1}, y_{i2}, \dots, y_{i,t-1}, \mathbf{X}_i; \alpha_i] = 0$

Dynamic Models (Lagged Dependent Variable)

• The FE estimator does not successfully eliminate the bias/inconsistency (Nickell, 1981) because $y_{i,t-1} - \bar{y}_{i,-1}$ is correlated with $\varepsilon_{it} - \bar{\varepsilon}_i$ (when T is small) in the regression

$$y_{it} - \bar{y}_i = \lambda(y_{i,t-1} - \bar{y}_{i,-1}) + (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)'eta + \varepsilon_{it} - \bar{\varepsilon}_i$$

• The first-difference estimator is biased/inconsistent as well because $y_{i,t-1} - y_{i,t-2}$ is correlated with the transformed error term $\varepsilon_{it} - \varepsilon_{i,t-1}$ (for any T) in the regression

$$y_{i,t-1} - y_{i,t-1} = \lambda(y_{i,t-1} - y_{i,t-2}) + (\mathbf{x}_{it} - \mathbf{x}_{i,t-1})'\beta + \varepsilon_{it} - \varepsilon_{i,t-1}$$

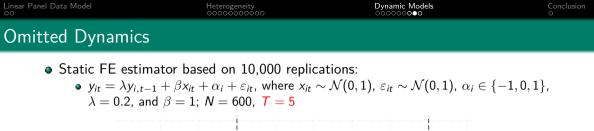
• Similar problems occur also without a lagged dependent variable when **x**_{it} violates the strict-exogeneity assumption.

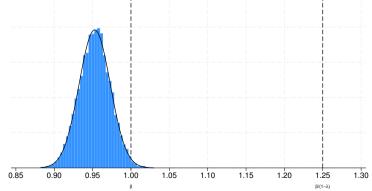
Omitted Dynamics

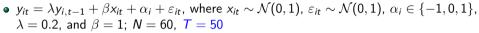
• Given the difficulties of estimating a (short-*T*) dynamic panel data model, applied researchers often decide to stick to a static panel data model instead. However, estimating

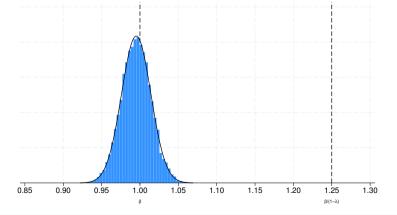
$$y_{it} = \mathbf{x}'_{it}\mathbf{b} + a_i + e_{it}$$

with the FE estimator $\hat{\mathbf{b}}_{FE}$ generally yields biased estimates of the short-run effects $\frac{\partial E[y_{it}|y_{i,t-1},\mathbf{X}_i;\alpha_i]}{\partial \mathbf{x}_{it}} = \beta$ when the true data-generating process is dynamic. • Even worse, many researchers using a static model specification implicitly aim to estimate long-run "equilibrium" effects $\frac{\partial E[y_{it}|\mathbf{X}_i;\alpha_i]}{\partial \mathbf{x}_{it}} = \frac{\beta}{1-\lambda}$.









Heterogeneity

Dynamic Models

Interim Conclusion

- Summary statistics and visual data representation are useful for initial data exploration, but should be treated with suspicion. Unobserved heterogeneity can lead to erroneous conclusions.
- Similarly, findings from multivariate regression analysis (pooled OLS) can be misleading.
- Misspecification can be hard to detect. Even after omitting unit-specific intercepts, the implied regression residuals might appear independently normally distributed.
- Be clear about your objects of interest. Use guidance from economic theory or policy objectives when deciding about the econometric model specification.
- Do not match the model to the estimator, but find the appropriate estimator for the chosen model.
 - Understand the difference between a model and an estimator.
- Simulations can help to uncover properties of estimators.